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Abstract

In this paper, we show that it is feasible for a mobile
phone to be used as an SOS beacon in an aerial search
and rescue operation. We show with various experiments
that we can reliably detect WiFi-enabled mobile phones
from the air at distances up to 200 m. By using a cus-
tom mobile application that triggers WiFi scanning with
the display off, we can simultaneously extend battery
life and increase WiFi scanning frequency, compared to
keeping the phone in the default scanning mode. Even if
an application is not installed or used, our measurement
study suggests that it may be possible to detect mobile
devices from their background WiFi emissions alone.

1 Introduction

It is not uncommon for hikers to become lost while
trekking in the wilderness. With the proliferation of Un-
manned Aerial Vehicle (UAV) technology, it has become
feasible to employ UAVs in aerial search and rescue op-
erations as they are not affected by difficult terrain.

Some researchers have proposed that image process-
ing be used in UAV-based search and rescue oper-
ations [1, 9]. However, image-processing-based ap-
proaches have many drawbacks. Specifically, they work
only when lighting conditions are favorable and there
is line-of-sight between the UAV and the lost persons.
Also, the probability of successful detection depends on
the quality of the images. Thus, the UAVs would need
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to carry larger and heavier optical and infrared cameras,
thereby reducing the effective flight time.

We believe that even though lost hikers typically have
no access to communications, it is not unlikely that many
would be carrying 802.11-compliant (or WiFi-enabled)
mobile phones with them. In this paper, we explore the
feasibility of locating such lost persons from the air by
detecting the WiFi signals from their mobile devices.

We argue that our proposed approach is feasible by
showing that (i) we can reliably detect WiFi-enabled mo-
bile phones from relatively long ranges from the air;
and (ii) we can significantly extend battery life using a
custom application that transmits WiFi frames with the
phone display turned off. In fact, we show that battery
life can be increased by up to 4.2 times with our custom
application compared to the default scanning mode.

Compared to previous approaches [1, 9], our WiFi-
based detection technique has several advantages: (i) the
detection range is longer (> 200 m) and our approach
does not require line-of-sight; (ii) there are no false posi-
tives in the detection; and (iii) the payload of the UAV is
lighter as we only need a WiFi-enabled embedded board,
and this improves the flight time.

Our approach works best if we know in advance the
MAC address of the lost person’s mobile device. This
is easily achieved if hikers install our custom “SOS Bea-
con” application on their mobile devices before they go
hiking. But even if the application is not installed or
used, our measurement study suggests that we might still
be able to detect mobile devices from their background
WiFi emissions alone.

2 Related Work

There are some previous proposals that use image pro-
cessing to detect lost persons from the air. Doherty
and Rudol proposed a technique that employs both in-
frared and conventional imaging to detect the human
body [5, 9]. However, their technique works only if most



of the body is exposed and lies flat on the ground. An-
drilika et al. proposed a way to overcome this limitation
by detecting human body parts [1]. Success rates are
reported to be up to 66% for UAV flight altitudes be-
tween 1.5 m to 2.5 m above ground. In general, image-
processing-based approaches perform poorly when light-
ing conditions are unfavorable, and they also require
line-of-sight.

Zorn et al. showed that the GSM signals from a mo-
bile phone can be used to locate lost persons in a search
and rescue mission [14]. Similarly, Zimmermann et al.
proposed that both the time difference of arrival (TDOA)
and the angle of arrival (AOA) of a GSM signal be used
for the same purpose [13]. While these techniques are
supposedly effective, they require the availability of cel-
lular network coverage, which is highly unlikely in re-
mote wilderness.

Liu et al. had earlier proposed that UAVs can attempt
to locate access points on the ground during warflying
by measuring RSSI [6]. However, they made certain
assumptions and did not investigate the link character-
istics and WiFi scanning with actual hardware. While
there is previous work on characterizing aerial-terrain
WiFi links [11, 12], that characterization was done be-
tween a powerful ground station access point with multi-
ple antennas and a WiFi-enabled UAV. Before our mea-
surement study described in Section 3.3, it was not clear
whether WiFi signals from mobile devices can be de-
tected reliably from the air and what is the effective de-
tection range.

3 Measurement Study

In this section, we describe experiments to demonstrate
the feasibility of our technique. Specifically, we inves-
tigate (i) the WiFi scanning characteristics of common
mobile devices, (ii) their power consumption, and (iii)
the effective range of WiFi signal detection from the air.

3.1 WiFi Scanning Behavior

A mobile device with its WiFi adapter enabled will pe-
riodically scan for WiFi access points (WiFi scan) by
switching to the various 802.11 channels and sending
a small number of Probe Request frames. We can pas-
sively detect the device by listening to the Probe Request
frames. In addition, we can also actively probe for the
device by sending an RTS frame, to which it will re-
spond with a CTS frame. This latter approach increases
the likelihood of detection but requires the MAC address
of the device to be known a priori. Both these approaches
only work when the device switches to the monitored
802.11 channel.
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Figure 1: Definition ofTon andTscan. Each box represents
the time spent in a particular 802.11 channel. Shaded box
is the monitored channel.

We investigate the WiFi scanning behavior with a rep-
resentative set of mobile devices. Using a 500 MHz x86
ALIX system board [8], we actively probe the devices
with RTS frames (of zero duration field) at a rate of 500
frames per second on a fixed 802.11 channel. A mo-
bile device will respond with a CTS frame if it happens
to be tuned to the chosen channel. By setting up sev-
eral ALIX boards to monitor different 802.11 channels,
we observed that the mobile devices we tested switched
through all possible 802.11 channels in sequence during
each WiFi scan.

We estimate the duration for which the device stays
on the monitored channel (Ton) by measuring the aver-
age time span of each batch of CTS frames received.
Similarly, we estimate the periodTscan by measuring the
time interval between the first CTS frames of consecutive
batches (see Figure 1). Our experiments show that the
value ofTscan depends on the state of the device, of which
we investigated three common scenarios: (i) display is on
with the WiFi Settings screen in the foreground; (ii) dis-
play is on with some other application in the foreground;
and (iii) display is off regardless of what application was
in the foreground. The results are summarized in Table 1.

We make several observations: (i) different mobile de-
vices have differentTon andTscan intervals, even if they
might be running the same Android OS version (c.f. HTC
Rhyme, HTC Desire and Motorola Electrify). (ii) In
some cases, theTscan intervals are not fixed, but follow
a certain pattern. (iii) In all cases, theTscan interval is
minimum when the user is at the WiFi Settings screen,
i.e. the phone scans for WiFi access points most aggres-
sively. On the other hand,Tscan increases exponentially
or the phone will stop scanning completely (indicated
with ‘–’) when the display is off. In order to detect a
mobile device, it is necessary that the UAV flies below a
certain speed which allows it to remain within the detec-
tion range of a mobile device for at leastTscan, and that
the interval between two consecutive RTS probes from
the UAV be smaller thanTon.

We also investigated the average number of Probe Re-
quest frames sent by the device during the intervalTon,
when it scans a given channel, and found that fewer
Probe Request frames are sent when we are actively
probing with RTS frames. As shown in Table 1, the
number of Probe Request frames sent when we are ac-



Table 1: WiFi scan intervals for different mobile devices under different user scenarios.

Device
OS Na Np

Ton Tscan (s)
Model (ms) WiFi Settings Screen Other Screens Display Off

HTC Rhyme Android 2.3.5 3.0 5.4 256 7 16 −

HTC Desire Android 2.3.5 2.3 5.0 66 6 15.5 −

Samsung Android 2.3.6 1.1 5.0 127 5.9 16,32,128,128,128,· · · −

Galaxy Y
Samsung Android 2.3.6 2.6 4.7 115 11.9 17,33,65,129,129,129,· · · −

Galaxy SII
Acer Liquid Android 2.1 2.9 4.9 83 5.5 5.5 5.5

Motorola Android 2.3.5 2.4 5.1 69 9.9 45.5 30,30,15,45,45,15,
Electrify 30,30,15,45,45,15,· · ·

Apple iPad iOS 5.5 3.0 5.4 72 4,6,11,11, 18,18,33,33,63,106, 44.9
3rd Generation 4,6,11,11,· · · 243,483,483,· · ·
Apple iPhone5 iOS 6.0 1.8 5.4 57 8.7,10.7,10.7,10.7,10.7, 31,31,62,62, 3,7,12,17,62,62,62,· · ·

8.7,10.7,10.7,10.7,10.7,· · · 31,31,62,62,· · ·

tively probing with RTS frames (Na) is smaller than that
when we are only listening passively (Np) for all devices
tested. We suspect that this is because according to the
802.11 standard, the device will always respond with a
CTS frame at the MAC layer when an RTS frame is
received. Hence, the RTS/CTS exchange from the ac-
tive probing would likely interrupt or delay the periodic
Probe Request transmissions. In spite of this, the proba-
bility of detection with active probing is still much higher
than that with passive listening, because in the former,
the device responds to every RTS frame it successfully
receives.

3.2 Battery Lifetime Analysis

It is well known that WiFi can be a significant drain on
battery life. For a search and rescue scenario, it is even
more critical that we try to prolong the battery life of the
mobile device as much as possible. In this light, it is
important to understand the battery consumption when a
mobile device is kept in the WiFi scanning mode. Also,
we see from Table 1 that the default WiFi scanning fre-
quency for most devices is relatively low, even in the
WiFi Settings screen scenario. It is likely that if a phone
is to be used as an SOS beacon, we would want a higher
scanning frequency and longer battery life.

To control the scanning frequency of the mobile de-
vice, we developed a custom Android application that
uses theWiFiManager [2] API of Android to trigger pe-
riodic WiFi scans at a user defined frequency, even when
the display is off. We hooked each mobile device to the
Monsoon Power Monitor [7] as shown in Figure 2, to
measure the current drawn. The Monsoon Power Mon-
itor directly supplies current to the mobile device and is
thus able to precisely measure the current supplied by
sampling every 200µs. 600,000 samples were taken

Figure 2: Setup of the Monsoon Power Monitor to mon-
itor current consumption of the device.

over a two-minute duration for three different scenarios:
(i) Everything Off, where the display is off and WiFi is
disabled; (ii) WiFi Settings Screen, which has the highest
default scan rate and where the display is on with WiFi
enabled; and (iii) Custom Application, where the display
is off and WiFi scan is triggered by the custom applica-
tion. The expected battery lifetime (Talive) was estimated
with the following relation:

Talive (h) =
Battery Capacity (mAh)

Average Current (mA)

During our measurements, the mobile devices were
not connected to any WiFi access point and all other
background applications were closed. Airplane mode
was also turned on to minimize extraneous power con-
sumption. For our custom scanning application, we
also tried setting the phones to different scanning rates.
Our results for three different mobile phone models are
shown in Table 2.

We found that different phone models have differ-
ent maximum WiFi scanning frequencies. We suspect
that this might be due to the difference in the underly-



Table 2: Estimated battery lifetimeTalive under different scenarios.

Device Model
Battery

Capacity
(mAh)

Everything Off WiFi Settings Screen Custom Application
Avg Cur Talive Freq Avg Cur Talive Freq Avg Cur Talive Tratio

(mA) (h) (Hz) (mA) (h) (Hz) (mA) (h)

HTC Desire 1400 2.4 583.3 0.17† 170.1 8.2
0.17† 32.6 42.9 5.23
1.36‡ 115.5 12.1 1.47

Motorola Electrify 1700 3.4 500.0 0.10† 145.6 11.7
0.10† 33.0 51.5 4.40
1.12‡ 80.1 21.2 1.81

Samsung Galaxy SII 1650 1.9 868.4 0.09† 139.3 11.8
0.09† 92.4 17.9 1.52
0.57‡ 134.5 12.3 1.04

†Default scanning frequency
‡Maximum scanning frequency

ing firmware or driver. The maximum scan frequency
achievable was 1.36 Hz, 1.12 Hz and 0.57 Hz for the
three phone models tested.

The last column in Table 2 (Tratio) shows the ratio of
Talive when using our custom application to that in the
WiFi Settings screen scenario. At the default scanning
frequency of each phone, our custom application sig-
nificantly improvesTalive for all three phones. This is
because our custom application can trigger WiFi scans
with the display turned off. At the maximum scanning
frequency, we still obtain considerable improvements to
Talive for the HTC Desire and Motorola Electrify, but not
with the Samsung Galaxy SII. However, we can still con-
siderably increaseTalive for this phone by setting a lower
scanning frequency. We tested the Galaxy SII with a
scanning frequency of 0.22 Hz (2.4 times of the default
0.09 Hz) and found that theTalive increased by 21%.

Note that the maximum scanning frequency is an im-
portant parameter that will eventually determine how fast
a UAV can fly while scanning an area. In summary, our
application allows us to scan at a higher frequency than
the default scanning frequency, which would increase the
probability of detection at higher UAV speeds. It also ex-
tends battery life compared to keeping the device on the
WiFi Settings screen.

3.3 Can We Reliably Detect Mobile De-
vices from the Air?

Finally, we attempt to answer the following question:
can we reliably detect WiFi signals from a mobile de-
vice from the air? To do so, we conducted a series of
measurements with a mobile phone and a WiFi-equipped
quadrotor UAV.

In our experiments, we adopted the active approach,
i.e. the quadrotor keeps sending RTS frames to the mo-
bile device at the rate of 100 frames per second and
records any received CTS frames. The reason for this is
that if we use a passive approach, there are only a limited
number of opportunities to detect the mobile device since

ALIX Board

WiFi Antenna

GPS

APM

Figure 3: WiFi-enabled quadrotor.

it only send a small number of Probe Request frames
while scanning a channel (see Table 1). On the other
hand, if we use the active approach, we will be able to
detect the mobile device for the entire duration that it is
on the monitored 802.11 channel.

Hardware. Our self-assembled quadrotor is shown
in Figure 3. The central plate is made of carbon fiber,
and the arms are made of wood. The GPS receiver [10]
is mounted about 15 cm above the central plate so as
to minimize the electromagnetic interference from on-
board electronics. We use the ArduPilot Mega 2.5
(APM) [4] as the flight controller.

The quadrotor carries an ALIX system board which
communicates with the APM over a serial interface.
The ALIX board is equipped with an Atheros AR5414
802.11a/b/g wireless card [3] (with 23 dBm transmis-
sion power) which is connected to a Motorola ML-2452-
APA2-01 dipole antenna. The antenna has a horizontal
beamwidth of 360◦ and vertical beamwidth of 35◦. We
use the 802.11g mode in our experiments. The weight of
the whole system is about 1.4 kg.

Experimental Setup. In addition to the quadrotor
and mobile phone, we also have an ALIX board on the
ground adjacent to the phone that acts as an access point



 0

 5

 10

 15

 20

 25

 30

 140  160  180  200  220  240

R
S

S
I o

f C
T

S
 (

dB
)

Distance from phone (m)

15m 10m 5m

Figure 4: Plot of RSSI of the CTS frames from Samsung
Galaxy SII to quadrotor.

for the mobile phone to associate with. This ensures that
the phone stays on a fixed WiFi channel and can be con-
tinuously probed by the quadrotor, as opposed to it re-
sponding intermittently if it switches between channels
in a WiFi scan. This ALIX board also overhears the
RTS/CTS frame exchange between the quadrotor and the
phone, so that we can accurately determine the frame de-
livery ratio.

Our experiments were performed on a sports field
which has a maximum span of 250 m. This limits
the range of our experiments because we cannot fly the
quadrotor beyond the field due to safety reasons. The
phone was placed on a foam support about 20 cm above
the ground at one corner of the field while the quadrotor
was flown from the middle of the field to the opposite
corner, at a constant speed of 1 m/s.

Effective Range. In Figure 4, we plot the RSSI of the
received CTS frames for the Samsung Galaxy SII mo-
bile phone at various ground distances, for three different
flight altitudes — 5 m, 10 m and 15 m. We also plot the
corresponding CTS frame delivery ratio against RSSI in
Figure 5. What our results show is that when the RSSI
is above a threshold, 15 dB in this experiment, the prob-
ability of the quadrotor successfully receiving the CTS
response from the mobile phone is very high. Our plots
suggest that the effective detection range (for free space)
is greater than 200 m at an altitude of 15 m.

Effect of Flight Altitude. To investigate the effect
of quadrotor flight altitude, we fixed the positions of the
mobile phone relative to the quadrotor at three different
distances (90 m, 150 m and 210 m) and measured the
RSSI value of the received CTS frames as the quadrotor
ascends up to 30 m in height. We did not go higher for
safety reasons. We plot the results in Figure 6. While
the RSSI generally seems to improve with altitude, the
maximum signal strength is achieved at about 15 m and
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Figure 5: Plot of frame delivery ratio against RSSI.
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Figure 6: Effect of flight altitude on RSSI.

flying above this height does not improve signal recep-
tion. Also, as expected, the maximum achievable RSSI
decreases with increased distance.

Effect of Phone Orientation. It turns out that the ori-
entation of the phone also affects the received signal at
the quadrotor. In Figure 7, we plot the RSSI of the re-
ceived CTS frames for both the vertical and flat orien-
tations for the HTC Desire phone. Reception is clearly
better when the phone is in the vertical orientation. This
suggests that if a lost hiker intends to use a mobile phone
as a WiFi beacon, instead of leaving the phone flat on
the ground, it would be helpful to set the phone in a
vertically-upright orientation.

4 Conclusion

In this paper, we have demonstrated with a comprehen-
sive measurement study that it is patently feasible for a
mobile phone to be used as an SOS beacon in an aerial
search and rescue scenario. Based on the conservative
estimate of a 200 m detection range, a single UAV flying
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Figure 7: RSSI of the CTS frames from HTC Desire to
quadrotor.

at a cruise speed of 5 m/s would be able to scan the 3,000-
hectare nature reserve of Singapore in about 4 hours.

What remains to be done is to assess the effect of
foliage on the attenuation of the received signal be-
cause such attenuation will reduce the effective range of
the sensing by the UAV and affect the resulting flight
paths. We believe however that our approach will still
likely be more effective than previously proposed image-
processing-based techniques [1, 9].

Furthermore, since most mobile phones are also
equipped with GPS, it should be relatively straightfor-
ward to program the SOS beacon application to send the
GPS location of the mobile phone directly to the quadro-
tor together with the CTS response. This means that
when a lost hiker is found, we will also be able to know
his exact GPS location.
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