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1 INTRODUCTION

Slicing is a critical technology in 5G, as it allows operators to slice
a physical network into multiple virtual networks, each dedicated to
a different use case/Mobile Virtual Network Operator (MVNO) [2].
Network slicing enables network operators to deploy a tailored set
of resources for specific use cases or MVNO. For example, high
performance reliable hardware is required only for ultra-reliable low-
latency (uURLLC) use cases such as autonomous vehicle networks.
Such tailoring of services reduces costs for network operators. Fur-
ther, 5G systems can now be deployed more quickly due to virtual-
ization provided by slicing, thereby enabling faster time-to-market.
To this end, there exists a large body of work that introduces slicing
in different parts of the cellular network (see Fig. 1). PRAN [12] and
FlexRAN [13] provide slicing in the Radio Access Network (RAN)
while Orion [14] provides slicing for the frontend (wireless spec-
trum). The fronthaul connects the frontend base station to the RAN
and carries digitized radio signals between the two parts of the cellu-
lar network. However, to the best of our knowledge, there exists no
work on slicing in the fronthaul. This severely limits the benefits of
slicing in the RAN and the frontend (see §1.1).

In this paper, we first describe the need for slicing in the fron-
thaul and show why slicing in the fronthaul is challenging. Next,
we propose a high-frequency dynamic forwarding scheme for up-
link traffic which leverages programmable switches for achieving
fronthaul slicing.

1.1 Motivation

Problem. State-of-the-art RAN slicing architectures such as Iso-
RAN [8] and POSENS [6] provide significant performance improve-
ment while using half the resources as compared to traditional ar-
chitectures. These gains come from the ability to distribute RAN
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Figure 1: Fronthaul slicing with multiple use cases and network
operators

processing for different use cases/MVNOs on customized hardware.
Therefore, the efficacy of these architectures is highly dependent on
the ability to do slicing in the fronthaul. As shown in Fig. 1, slicing
in the fronthaul creates independent logical networks for packets
belonging to different use cases/MVNOs.

Challenge. The key challenge for slicing in the fronthaul is the
lack of user/slice information within the data packets. Since the
fronthaul is responsible for carrying digitized radio signals belonging
to the Physical Layer, user/slice identifiers available in the Access
Layer (MAC) are missing. In essence, it is not possible to look at
a packet in the fronthaul network and identify the network slice it
belongs to.

Strawman Solution. A straightforward solution would be to im-
plement fronthaul slicing on servers in the RAN as a network func-
tion. In such a scenario, the servers route the fronthaul data packets
similar to traditional L4 load balancing [5] but with the additional in-
formation of the wireless schedule. However, since each base station
in 5G is capable of generating over 200 Gbps [4] of fronthaul traffic,
multiple servers would be needed to slice it. Furthermore, with each
RAN managing a large number of base stations, 100s of servers
would be needed for fronthaul slicing. This would dramatically in-
crease both the CAPEX and OPEX of the RAN. Hence we propose
using programmable switches for fronthaul slicing, which have been
previously shown to replace hundreds of servers for traditional L4
load balancing [10].

2 DESIGN

Our key observation is that all wireless transmissions in the cellular
network are scheduled by the network scheduler in advance. Addi-
tionally, traffic in the fronthaul is transmitted at a constant bit-rate
with no re-transmissions. As a result, all packets in the fronthaul can
be predicted in advance using the wireless schedule. Fig. 1 shows
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Figure 2: Overview of system design

a simple representation of the relationship between the wireless
schedule and the corresponding sequence of packets in the fronthaul.
Thu, we propose a high-frequency dynamic forwarding scheme for
fronthaul slicing which uses the wireless schedule to identify the
network slice and forward the packet accordingly.

A simple solution would be to have a forwarding table that
matches on the packet sequence number [4]. We can then add entries
to the forwarding table according to the sequence of packet arrival
derived from the wireless schedule (Fig. 1). In 5G, a wireless sched-
ule is typically generated every 1 ms and each schedule can contain
up to 10 users [1], leading to 10 forwarding table updates per ms.
However, prior studies [7] have shown that hardware switches can
only update up to ~1.2 forwarding rules per ms via the control plane.
Therefore, even with the network schedule being generated 4 ms [3]
in advance, it is not possible to finish updating 10 forwarding rules
per base station within this duration. Thus, we need a system design
that can support high-frequency update of forwarding table rules.

We propose to leverage SRAM-based transactional stateful mem-
ory (called register arrays) in the dataplane of programmable switches
to store the forwarding information corresponding to each schedule.
For each base station, we create a ring buffer using register arrays as
shown in Fig. 2. Since the ring buffer is implemented using register
arrays, its entries can be updated in the dataplane at a high frequency.
The ring buffer entries contain the destination address of the servers
in order of the expected packet arrivals as determined by the wireless
schedule. To update the entries, the scheduler generates a “Schedule
Packet” and sends it to the switch every 1 ms by calling an API
function. The API function creates a “Schedule Packet” which con-
tains the destination address of the RAN server for each user in the
wireless schedule. On receiving the “Schedule Packet”, the switch
writes new entries to the ring buffer and increments the write index.
On the other hand, when a fronthaul packet arrives, the switch reads
the destination server address from the ring buffer at the read index
and forwards the fronthaul packet accordingly. Note that this scheme
is applicable to the fronthaul traffic in the uplink direction only. In
the downlink direction, such a scheme is not required since all the
packets go to the destined base station.

3 EVALUATION & CONCLUSION

We have implemented our high-frequency dynamic routing scheme
on a Barefoot Tofino programmable switch using ~1000 lines of P4
code. For evaluation, we consider a 7-2x functional split [11] in the
cellular network, where the common RF processing is executed at the
base station while the user-specific processing happens in the RAN.
We generate the corresponding fronthaul and schedule packets using
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Figure 3: Latency for adding 4 and 10 scheduling entries in the
dataplane

Scapy. We have validated the correctness of our implementation for
both reading and writing of the ring buffer using PTF tests.

The average and maximum number of users allocated in a wire-
less schedule are 4 and 10 respectively [3]. Therefore, to evaluate
the latency for updating schedule in the ring buffer, we generate
schedule packets with 4 and 10 entries. Fig. 3 shows the latency
for updating the ring buffer after the schedule packet is received
by the switch dataplane. We can see that updating 10 schedule en-
tries requires less than 2 us, which is 4000x faster than updating
the forwarding table via the control plane (§2). Additionally, using
techniques similar to DPTP [9], we measure the latency for sending
a schedule packet from the RAN to the switch, and find it to be at
most 1.5 us. Overall, the total latency from the generation of the
schedule packet to updating of the switch ring buffer takes at most
3.5us. Thus the time to update the ring buffer is negligible when
compared to the arrival rate of “Schedule Packets” which is 1 ms.

In future, we plan to perform evaluations using real network
traces to simulate fronthaul traffic patterns for a large number of
base stations.
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