JUNCTION: Enabling 5G-WiFi Convergence

at Scale with Programmable Switches
(Under double-blind review. Please do NOT circulate.)

Xin Zhe Khooif, Cha Hwan Song', Satis Kumar Permal’, Nishant Budhdev?, Raj Joshif, Mun Choon Chan'

fNational University of Singapore

Abstract—With the increasing demand for mobile traffic and
the proliferation of multi-homed mobile devices, 5G-WiFi con-
vergence has become a trend in mobile networks. To fully
leverage this convergence, Access Traffic Steering, Switching,
and Splitting (ATSSS) have been introduced to couple 5G and
WiFi networks for increased throughput and reliability. However,
existing software-based ATSSS proxies suffer from performance
overhead and latency issues, making them unsuitable for large-
scale deployment. To address this, we propose JUNCTION, an
end-to-end system that leverages programmable switches to build
a scalable and performant ATSSS solution. JUNCTION consists
of JUNCTION-UPF, a hardware-accelerated ATSSS-enabled UPF,
and JUNCTION-UE, a userspace client program. Our evaluations
demonstrate that JUNCTION can cost 225x less and consume
84.7x less power while keeping the processing latency overhead
under 3 us. We deploy JUNCTION on a real 5G-WiFi testbed and
validate its traffic steering functionality.

I. INTRODUCTION

With the ever-increasing mobile traffic demands alongside
the increasing number of mobile users [1], mobile operators
are constrained by the available licensed radio spectrum to
offer greater bandwidth and to support more use cases and
users. The proliferation of multi-homed mobile devices has
driven operators to explore access technologies operating in
the unlicensed spectrum to complement cellular networks.

In this light, operators are streamlining the management
and tightly integrating two radio access technologies (RATSs),
i.e., 5G and WiFi, at the operator core. This has driven the
emerging trend of 5G-WiFi convergence [2]. Under this con-
text, mobile users can now access 5G services with expanded
coverage and greater reliability across 5G and the increasingly
ubiquitous [3] WiFi networks.

To unleash the potential of 5G-WiFi convergence, Access
Traffic Steering, Switching, and Splitting (ATSSS) have been
introduced in 3GPP Release 16 [4] to couple together non-
3GPP access networks (e.g., WiFi) and 3GPP access networks
(e.g., 5G NR) to enable increased throughput, robustness and
reliability. We illustrate ATSSS in Fig. 1.

Enabling ATSSS requires support from the 5G user plane
function (UPF) and user equipment (UE). At the UPF, an
ATSSS component is introduced as the anchor point for the
multiple accesses, i.e., 5G NR and WiFi, whereas an ATSSS
agent is introduced at the UE. ATSSS masks the multiple
accesses from the user and upper-layer applications to enable
seamless connectivity and aggregated bandwidth.

As 5G deployments mature [1] and WiFi technologies
improve (e.g., WiFi 7 is expected to support up to >40 Gbps
peak throughput [5]), it is crucial that ATSSS-enabled UPF can

¥Nokia Bell Labs

5G Core
(Control Plane)

Figure 1: High-level overview of ATSSS.

WiFi

cope with increasing traffic demands to reap the full benefits
of 5G-WiFi convergence.

Existing deployments [6]-[8] use software-based ATSSS
proxies that use protocols like multipath TCP (MPTCP) [9], to
exploit the multiple access networks. However, existing soft-
ware proxies impose non-negligible overhead on forwarding
performance and end-to-end latency is significantly impacted
under load, which degrades the overall user quality of experi-
ence (QoE).

While one can horizontally scale the ATSSS-enabled UPF
(i.e., scale-out) by increasing the number of commodity servers
to cope with the enormous traffic loads, such a scale-out
approach is unsuitable and unsustainable. The reason is two-
fold. First, horizontal scaling increases the CapEx (e.g., hard-
ware and/or rack space acquisition cost) and OpEx (e.g.,
power, cooling, and engineering time consumed in system
troubleshooting). Furthermore, as Moore’s law falls behind the
Internet traffic growth [10], the single-core CPU performance
growth will consistently be outpaced by the increasing traffic
growth in the foreseeable future [11].

This necessitates a sustainable and scalable solution for
operators to enable the widespread deployment of ATSSS.
Programmable switches with up to 12.8 Tbps line rate packet
processing capability present a viable and promising platform
to realize a performant, and scalable ATSSS solution.

To that end, we propose JUNCTION, an end-to-end system
to drive the roll-out of ATSSS at scale. JUNCTION consists
of two key components: (i) JUNCTION-UPF, a hardware-
accelerated ATSSS-enabled UPF build on top of multi-Tbps
programmable switches; (ii) JUNCTION-UE, a userspace client
program to enable ATSSS on the user devices.

Designing JUNCTION-UPF is non-trivial, especially given
the limited hardware resources and restricted programming
model. Particularly, we need to maintain a large number of
user sessions and their corresponding path states to enforce
traffic steering decisions. Adopting approaches in existing
transport-layer approaches (e.g., MPTCP) results in hugely
inefficient use of scarce memory resources. To address this, we

UPF

p | MPTCP
p[] Prox

UPF
)

(b) ATSSS-LL
Figure 2: Difference between ATSSS-HL and ATSSS-LL.

design a hierarchical lookup structure to represent the ATSSS
sessions and a unified traffic steering structure to maintain path
states lest memory wastage on JUNCTION-UPF. Besides, as
packets can be delivered in more than one path, i.e., 5G and/or
WiFi, packets can arrive out-of-order and need to be reordered
on the programmable switch, which is challenging given the
restricted memory access patterns, and feed-forward switching
pipeline. To address out-of-order packets, we implement a
mechanism to reorder packets using pause-able FIFO queues.
In this paper, our key contributions are as follows:

1) We show that software-based proxies suffer from per-
formance overhead and latency issues, and the reason is
fundamental to the slow CPU performance (§III).

2) We prototype JUNCTION-UPF- the first ATSSS-enabled
5G user plane function (UPF) on an Intel Tofino2 pro-
grammable switch (§IV,§V).

3) We show that compared to software-based proxies, JUNC-
TION can cost 225X less and consume 84.7x less power
with <3 ps processing latency overhead, and we validate
JUNCTION on an actual 5G-WiFi testbed (§VI).

4) Together with JUNCTION-UPF, we implement
JUNCTION-UE, and JUNCTION agent for an end-
to-end ATSSS system. JUNCTION’s implementation is
publicly available at [12].

The paper is organized as follows: We present the back-
ground and related work in §II. Then, we highlight the
motivation for JUNCTION in §III followed by the technical
challenges in §IV. We present the design and implementation
of JUNCTION in §V. Finally, we present the evaluations in §VI
before concluding the paper in §VIL.

II. BACKGROUND AND RELATED WORK

In this section, we provide the required background and
introduce the related work.

A. ATSSS

3GPP Release 16 enables 5G-WiFi convergence by intro-
ducing a standardized function called ATSSS' — Access Traffic
Steering, Switching, and Splitting [4]. The goal of ATSSS is
to deliver seamless connectivity and aggregated throughput
by leveraging multiple access networks. This is achieved
through the following traffic steering modes defined in the

T ATSSS is more general and can enable convergence between one 3GPP and
one non-3GPP access network. We focus on 5G and WiFi access networks.

ATSSS

Software-based | H/W Friendly

I
Low-Layer (LL)

JUNCTION

High-LLyer (HL)

MPTCP MP-QUIC*

(Proposed in Rel. 18)
Figure 3: Design space.

standards [4], [13]: (i) active-standby: traffic is switched over
to the backup access when the primary fails; (ii) load balance:
traffic is split across both networks based on a static/dynamic
ratio; (iii) smallest delay: traffic is steered over the link with
the lowest RTT; (iv) priority-based: traffic is sent over priority
access, and overflows to the backup access, if congested.

To activate ATSSS, an ATSSS session, technically called
the MAPDU (Multi-Access Packet Data Unit) session, is
established between the user equipment (UE) and the user-
plane function (UPF) of the 5G core network (see Fig. 1). The
ATSSS sessions are established on top of the underlying PDU
sessions for 5G and/or WiFi. During the session establishment
process, the 5G core networks’ control plane (i.e., SMF and
PCF) conveys both the UE and the UPF with information
such as the supported steering modes, (virtual) IP address,
measurement assistance information, etc. Between a UE and
the UPF, there can be multiple ATSSS sessions in parallel
to cater to the different steering modes required to support
different applications. For example, on-demand video appli-
cations (e.g., YouTube, NetFlix) could require load balancing
while interactive online games could prefer smallest delay as
the steering mode. Note that ATSSS sessions are specific to
an application, i.e., YouTube and NetFlix together require two
ATSSS sessions even if they use the same steering mode.

Network operators can use two approaches to realize the
ATSSS (see Fig. 2) — at the higher-layer (ATSSS-HL) or at
the lower-layer (ATSSS-LL)?. ATSSS-HL implements steering
at the transport layer through a proxy e.g. an MPTCP [9]
proxy as shown in Fig. 2a. Being at the transport layer itself,
the ATSSS-HL includes mechanisms for reliable delivery,
congestion control, and multi-path packet ordering. On the
other hand, ATSSS-LL implements steering at the lower
layers of the network protocol stack (Ethernet to IP) through
“tunneling” (see Fig. 2b). ATSSS-LL only needs to ensure
multi-path ordering within a limit permitted by the transport
layer [15] as it uses higher-layer transport (TCP or QUIC [16])
to support reliable delivery and congestion control. The key
difference between ATSSS-HL and ATSSS-LL is that the
latter is only responsible for multi-path packet ordering, as
it offloads reliable delivery and congestion delivery to other
transport layer protocols such as TCP or QUIC. In addition,
both approaches need to include mechanisms to measure
network characteristics such as the RTT in order to facilitate
steering modes such as smallest delay. This makes ATSSS-LL
easier to implement and independent of the transport protocols

2ATSSS-HL and ATSSS-LL can be configured to work standalone or co-
exist to complement each other [14].

0

w5 =
a 7 © 20K i
2 20 g I single
940 [9
b =15 2 15K
g 30 g g
Q v
220 @ 10 20.0x £ 10K
€ [}
3 Q
E10 g s & 5K
X = I
S ol — S ol G ol :
Wifi-5 Wifi-7 LTE 5 i7-3770K i7-13700KF

G
(IMT-adv) (IMT-2020)

(b) LTE/5G [29]

(2014) (2024)

(a) WiFi [27], [28]

(2012) (2022)
(c) CPU - Intel i7
Figure 4: WiFi/LTE/5G peak throughput over the past decade
and the growth of single/multi-core CPU Geekbench6 scores.

used by an application. Other than being simpler, the primary
advantage of ATSSS-LL over ATSSS-HL is that it is not tied
to a specific transport protocol.

B. Related Work

Protocols for ATSSS: As of 3GPP Release 17 [13], [14],
MPTCP [9] has been selected as the de-facto protocol for the
ATSSS-HL approach. In addition to MPTCP, there have been
other proposals that are under study [17]. For the QUIC [16]
transport, MP-QUIC [18] is being considered in 3GPP Release
18 [19] while MP-DCCP [20] is an ATSSS proposal for
UDP in general. In practice, these ATSSS-HL protocols are
implemented using proxy software such as ShadowSocks [21]
that run as a part of the UPF in the Core Network (see Fig. 2a).
This applies to even commercial ATSSS-HL offerings such
as by Tessares [7], [22], [23]. However, as we show in §III,
the problem with such a software-based approach is that they
incur a high latency overhead and they do not scale efficiently
with regards to power and cost. While the O-RTT-Convert
protocol [23] reduces the initial setup latency, it does not
reduce the per-packet processing latency of an ATSSS-HL
software-based proxy. In contrast, JUNCTION uses commodity
programmable switches to support ATSSS through a hardware-
driven design that not only keeps the latency overhead low but
also scales more efficiently. In order to do so, JUNCTION takes
the ATSSS-LL approach and thus represents an unexplored?
point in the ATSSS design space (see Fig. 3).

Cellular and WiFi: The idea of augmenting cellular networks
with WiFi to offload traffic has been around since 3G [24]
and has also been standardized in LTE [25]. In particular,
Voice over WiFi or VoWiFi [26] has been widely adopted
by operators to deliver voice/ IMS services over WiFi to their
subscribers. These older approaches work mainly for voice and
simply send traffic over WiFi (when available) without any
sophisticated traffic steering. ATSSS [14] on the other hand,
supports sophisticated steering modes that integrate WiFi and
cellular access networks together to deliver services beyond
just voice. Thus, ATSSS needs to handle orders of magnitude
more traffic as compared to existing VoWiFi deployments.

III. MOTIVATION: LIMITATION OF SOFTWARE PROXIES
Over the last decade, the peak throughput supported by WiFi
and LTE/5G networks has increased 6.6x and 20x, respectively

3While the standards propose the ATSSS-LL approach, they do not specify
any specific algorithm/design for ATSSS-LL.

(see Fig. 4). This has been accompanied by ~41% increase
in the density (per 100 people) of mobile devices [30]. As
a result, given the same geographical region, the expected
total traffic volume that needs to be handled by the core
network infrastructure for converged networks has signifi-
cantly increased as compared to 3G/LTE networks a decade
ago [31]. In addition to the high traffic volume, ATSSS in
today’s 5G networks needs to keep its latency overhead low in
order to support low-latency and high bandwidth applications
such as online gaming and AR/VR. Given the aforementioned
requirements, in this section, we evaluate how existing ATSSS
solutions (§1I-B) scale with increasing traffic volume and if
they are able to keep the latency overhead low.

Setup: As outlined in §II-A, existing ATSSS deployments
are ATSSS-HL only which are based on software-based
MPTCP proxies. We compare three open-source production-
grade, high-performance multi-threaded TCP proxy server
implementations, namely the Rust-based ShadowSocks [21],
Nginx [32], and Nginx with DPDK-based F-Stack [33]. We
run the software proxies on a commodity server running
Ubuntu 22.04 with the low-latency Linux kernel v5.15, uti-
lizing a dedicated 16-core Intel Xeon Gold 6326 CPU set
to performance mode. We use an NVIDIA CX-6 Dx 100G
NIC [34] that is connected directly to the CPU via PCle.

We evaluate the processing latency of each software proxy
as the number of connections/user sessions increases. To do so,
we use an iPerf server/client running on two additional servers
to generate TCP traffic that passes through the proxy. We vary
the load on the proxy by increasing the number of parallel iPerf
connections with each connection representing a bandwidth-
limited (100 Mbps) access network user. Using a fourth server,
we measure (sample) the software proxy’s processing latency
by sending 100K ping-pong TCP packets through the proxy
for each load configuration. We show the results in Fig. 5.

We can see that among the three proxies, Nginx-DPDK
performs better, and yet at 1,024 users, it incurs an average and
99p latency overhead of ~2.6 ms and ~3 ms, respectively. To
put this overhead in perspective, the target end-to-end latency
as outlined by the ITU [29] is just 1 ms! The results from Fig. 5
also show that for a relaxed latency overhead SLO of 3 ms,
Nginx-DPDK requires a 16-core CPU to support 1,024 users.
Considering that a converged network core would require to
support users on the order of hundreds of thousands, we would
require 100’s of CPUs to support ATSSS using a software-
based proxy such as Nginx-DPDK (more in §VI-A).

While the above results may seem specific to our testbed
setup and the specific software proxies being tested, the reason
for poor scalability is more fundamental — over the past
decade, the increase in network speeds (WiFi/LTE/SG) has
far outpaced the increase in CPU performance (see Fig. 4).
Over the past decade, the single-core and multi-core CPU
performance has increased by only 2.3x and 3.8x, respectively.
which is much lower than the increase in the peak throughput
for WiFi or LTE/5G. As observed by Pan et al. [11], CPU-
based packet processing has therefore become a bottleneck

—— ShadowSocll(
—--®-- Nginx !

207 —e— shadowsSoc S
——®-- Nginx /

IN

Nginx-DPD

Avg Latency (ms)
N
p99 Latency (ms)

Ak A kAohAAT

o

16 64 2561024 1 4 16 64 2561024
Number of Users

(b) 99™-percentile
Figure 5: Processing latency of ATSSS-HL proxies.

1 4
Number of Users

(a) Average

for per-flow throughput due to the stagnated growth of single-
core performance. Our findings using the Nginx-DPDK high-
performance TCP stack further corroborates this.

Key takeaway: Given the requirements of handling high
traffic volume while keeping latency overhead low, the de-
ployment of ATSSS-HL based on software proxies presents a
significant challenge to the CapEx (cost) and OpEx (power)
required for 5G-WiFi convergence.

Case for programmable switches: Given the fundamental
limitation of using software-based proxies, we turn towards
data-plane programmable switches as an alternative hard-
ware platform to realize scalable and low-latency ATSSS.
Today’s programmable switches can support multi-Tbps line-
rate packet processing e.g., 12.8 Tbps on the Intel Tofino2 [35].
Any data plane program that can be compiled and loaded
on such switches can run at line rate with deterministic low
latency (few pus) [36]. Furthermore, since the programmable
switching hardware is optimized for packet processing, a
network function running on a programmable switch scales
more efficiently w.r.t. power and cost compared to its software
implementation on general-purpose CPUs [37]. What this
means is that if we can realize an ATSSS solution using
a programmable switch, then by the natural property of the
hardware, we can scale more efficiently to a higher traffic
volume while keeping the latency overhead low. Therefore,
the key question that we address in the rest of the paper is —
how can we realize ATSSS using a programmable switch?

IV. CHALLENGES

Realizing ATSSS on programmable switches is not straight-
forward because of their restricted programming model. Fur-
thermore, given the feed-forward architecture of the packet
processing pipeline, a memory location can be accessed at
most once during the entire processing of a packet on the
switch [38]. The ATSSS-HL approach requires supporting con-
gestion control and reliability (§1I-A) which involves complex
state machines and memory access patterns that do not fit
the programming model and architecture of programmable
switches. As a result, in JUNCTION, we opt for the ATSSS-LL
approach and realize ATSSS through tunneling at the network
layer. However, even for ATSSS-LL, we have the following
three key technical challenges:

C-1. Supporting a large number of ATSSS sessions: Since
each user is expected to have multiple ATSSS sessions (§11-A),
the ATSSS function running at the UPF requires significant

JUNCTION-UPF

Tunnel Encap/Decap '

JUNCTION-UE

Tunnel Encap/Decap ' :

Uplink 5
Uplink Steering Engine Steering Engine
5G/WiFi

Uplink Path Monitoring :

Pkt Reordering ti

Path Monitoring :

Uplink Pkt Reordering ti

Figure 6: JUNCTION overview.

state. With the ATSSS-HL approach implemented as software-
based proxies, this state requirement is manageable due to the
abundant memory (100’s of GB DRAM) available on a server.
However, since programmable switches have limited memory
(10’s of MB SRAM), a naive ATSSS-LL implementation could
significantly restrict the number of users that can be supported.

C-2. Additional state for distinct path metrics.: A user can
have ATSSS sessions with different steering modes. Since each
steering mode maintains distinct path metrics (e.g., RTT) to
make steering decisions, additional state is required for the
path metrics per-user per-steering mode.

C-3. Putting out-of-order packets back in order: In the
uplink, as packets can arrive from either 5G and WiFi, they
may arrive out-of-order which is detrimental to application
performance [19]. Therefore, we need to reorder the received
packets before forwarding them. Reordering packets on pro-
grammable switches is non-trivial as programmable switches
do not naturally support selective buffering and sorting out-
of-order packets in the data plane [39].

V. JUNCTION: DESIGN AND IMPLEMENTATION
A. Overview of JUNCTION

JUNCTION enables ATSSS between the user-plane function
in the 5G core and user device through multi-path tunneling.
The tunneling mechanism is similar to VPN implementations.
There are three components in JUNCTION: (i) the JUNCTION-
UE client that runs on the user device, (ii) the JUNCTION-
UPF that is at the 5G core, and (iii) the JUNCTION agent.
The JUNCTION-UE communicates with the JUNCTION agent
in the 5G core to establish ATSSS sessions. Application traffic
that is configured to use the ATSSS sessions is tunneled
between JUNCTION-UE and JUNCTION-UPF while enforcing
the configured steering mode. As the network condition varies,
the steering mode steers the traffic across the two access
networks.

The following is a brief summary of JUNCTION’s components

with Fig. 6 showing the sub-components of JUNCTION-UE

and JUNCTION-UPF:

1) The JUNCTION-UE manages and establishes ATSSS ses-
sions with the 5G core. The steering engine performs
uplink traffic steering according to the ATSSS session
configurations and reorders packets on the downlink. It

encapsulates the packets leaving the JUNCTION-UE with

the JUNCTION header and decapsulates the packets in

the reverse direction. It also performs continuous path
measurements by generating probes and reporting link
failures.

2) The JUNCTION-UPF includes general UPF processing
(e.g., GTP, QoS, etc). In addition to performing en-
cap/decap of JUNCTION headers, it reorders the out-of-
order packets in the uplink direction and performs traffic
steering in the downlink direction as per the mode con-
figured in the ATSSS session. It also participates in the
path measurements process by responding to RTT probes
from the JUNCTION-UE, keeps track of the path metrics for
traffic steering, and forwards a copy of the measurements
to the JUNCTION agent.

3) The JUNCTION agent interfaces with the 5G core’s con-
trol plane in managing the UPF functionalities on the
JUNCTION-UPF. In addition to managing the ATSSS
sessions, it monitors and makes necessary configurations
based on the user path metrics.

Our work focuses on the design of the JUNCTION-
UPF. As basic UPF functions have already been shown to
be implementable on current programmable switches (e.g.
P4UPF [40]), our work focuses on JUNCTION-specific designs
and omit details of supporting other UPF-functionalities.

B. JUNCTION-UE

ATSSS being an emerging feature, current user devices do
not have the required support for it (especially ATSSS-LL). We
therefore provide JUNCTION-UE which is a userspace client
application that functions akin to a VPN tunnel client and
allows applications to interact with the JUNCTION-UPF. The
JUNCTION-UE takes on the following responsibilities:

1) ATSSS session establishment and management: The
JUNCTION-UE first communicates with the 5G core control
plane to exchange connection parameters including the per-
session traffic steering modes, and then configures tunnels for
multiple ATSSS sessions required by a user device.

2) Uplink/downlink packet processing: JUNCTION-UE en-
caps the uplink traffic and decaps the downlink traffic with the
JUNCTION header. It steers the uplink traffic as per the steering
mode and also marks the uplink packets to aid the JUNCTION-
UPF in uplink packet reordering (§V-D1). It implements a
reordering buffer to restore packet order for downlink traffic.

3) Continuous path measurements and reporting:
JUNCTION-UE actively probes the path states/metrics
together with the JUNCTION-UPF (§V-E) and notifies the
JUNCTION-UPF in case of link failures.

C. JUNCTION-UPF: Downlink Packet Processing

In the downlink, as packets are received by the JUNCTION-
UPF, it first performs an ATSSS session lookup with the
steering engine. If an ATSSS session is found, it makes
further lookups and applies steering decisions followed by
standard UPF functionalities (e.g., GTP and QoS). Otherwise,
the packet proceeds directly to the UPF functionalities.

Lookup Key Steering Mode, Tunnel End-points
10.0.0.1 ’ YouTube.com ’ Load Balance | ipx ipy —‘
L Il L I
L LT—J I

(a) Flat ATSSS session lookup.

Lookup / \J
10.0.0.1 ===,
[

(b) Hierarchical ATSSS session lookup.
Figure 7: Flat versus Hierarchical ATSSS session lookup

Load Balance

Lookup

Youtube.com

Recall that each user can have multiple ATSSS sessions,
with each session dedicated to a specific application (e.g.,
YouTube) and traffic steering mode (§II-A). At the JUNCTION-
UE, each ATSSS session is mapped to a distinct tunnel, and
assigned a unique virtual tunnel IP address, serving as the
ATSSS session ID.

1) Hierarchical ATSSS session lookup: An ATSSS session
comprises a “key” and a ‘“value”. The key consists of the
ATSSS session ID and the corresponding application, while
the value contains the applied steering mode and the tunneling
endpoint IP addresses for 5G and WiFi. The existing structure,
as shown in Fig. 7a, results in NV x M entries to store the
session, and application part of the key, respectively, for NV
sessions and M applications, which is memory-inefficient,
particularly for programmable switches (C-1).

Key insight: As operators often use a common steering
mode for specific application traffic, such as load-balance
for YouTube, we can summarize ATSSS sessions with similar
traffic steering modes.

To achieve this, we implement a hierarchical lookup for the
ATSSS session “key”. First, we look up the ATSSS session
ID. If a match is found, it returns the tunneling endpoint IP
addresses for 5G and WiFi as the “value”. Otherwise, the
packet is not part of an ATSSS session, and we proceed with
the regular UPF processing. Then, we retrieve the application
to find the corresponding traffic mode to apply. This approach
reduces the number of application entries to M (Fig. 7b).

Handling exception cases: To handle ATSSS sessions that
cannot be summarized, we perform an additional lookup on
the entire ATSSS session key, similar to that shown in Fig. 7a,
after the initial lookup in Fig. 7b. For this supplementary
lookup table, we provision only a small number of entries,
for instance, 10% of the total number of users. This approach
efficiently addresses exceptions while reducing overall mem-
ory utilization.

2) Unified traffic steering structure: To avoid redundancy
and optimize memory usage (C-2), we propose a single
unified data structure to represent per-user path metrics, ac-
commodating multiple ATSSS sessions with different traffic
steering modes dependent on distinct path metrics. With this
approach, we eliminate the need to maintain separate path
states for each individual ATSSS session of the same user.

By employing the unified structure, we can efficiently support
the various required steering modes while streamlining the
implementation surrounding this single representation.

In dissecting the requirements of the traffic steering modes
(§8II-A), we find that active standby and load balance neces-
sitate binary information (0 or 1) to represent the availability
of an access network. Conversely, smallest delay and priority-
based require round-trip time (RTT) values, represented as
non-zero integers (e.g., 10 ms), to determine the less-congested
access network for traffic forwarding. As the RTT measure-
ments presume the availability of the access network (non-
zero RTT indicates availability), maintaining one set of path
states for each user is sufficient, irrespective of the number of
sessions or steering modes used.

To represent the unified structure, we use two arrays to
maintain the path states: one for 5G and another for WiFi.
Each user is assigned with a unique index, which is determined
by the JUNCTION agent during the setup of the first ATSSS
session. When accessing a user’s path state, we retrieve the
index during the ATSSS session lookup in §V-C1, along with
the tunnel endpoint IPs for 5G and WiFi. Subsequently, we
read the user’s path state from the unified structure using the
obtained index. This efficient approach allows us to access and
manage the path states for each user effectively, regardless of
the number of ATSSS sessions or the chosen steering modes.

3) Implementing different traffic steering modes: We dis-
cuss how the different traffic steering modes are realized in
JUNCTION-UPF using the path states in §V-C2.

First, for active standby, a primary path and a backup path
are defined. If the retrieved RTT value for the primary path is
non-zero, it indicates that the access is active, and traffic can
continue to be forwarded on it. Otherwise, traffic is directed to
the backup path if available. In smallest delay, the path with
the smallest, non-zero RTT is selected for traffic forwarding.

In load balance, packets are divided based on the rightmost
digit of their sequence numbers. For instance, to achieve a
30:70 split ratio, we route packets with the rightmost digits 0
to 2 over the first path and those with digits 3 to 9 over the
other path. Before forwarding, we verify that the next selected
path has a non-zero RTT value. Finally, in priority-based, we
designate a high-priority path. We compare the retrieved RTT
value for the high-priority path with a pre-defined threshold.
If it surpasses the threshold, the packet overflows to the low-
priority path for forwarding.

Design limitation: For load balance and priority-based
modes that split packets across two paths, sequencing becomes
necessary for packet reordering at the JUNCTION-UE. Thus,
a separate sequencing counter must be maintained for ATSSS
sessions using these steering modes. This separate counter
cannot be summarized as in §V-C1, making ATSSS sessions
requiring load balance and priority-based to be treated as
exception cases in the supplementary lookup table.

D. JUNCTION-UPF: Uplink packet processing

In the uplink, a packet undergoes general UPF processing,
including GTP and QoS. Next, we check if the incoming

packet is a JUNCTION packet and, if so, JUNCTION-UPF
proceeds with packet decapsulation. Due to packets arriving
from both 5G and WiFi, they may arrive out-of-order. If
unaddressed, this issue could negatively impact upper-layer
transport/applications (§VI-C). Therefore, JUNCTION-UPF is
responsible for restoring the order of out-of-order packets.

1) Restoring packet order with FIFO queue pausing: We
devise a packet reordering engine to restore packet order,
leveraging pause-able FIFO queues on modern programmable
switches to avoid the necessity of packet recirculation (C-3).
Recent research [39] has demonstrated its viability, particularly
when incoming packets exhibit predictable patterns in data
center environments. Instead of reordering individual packets,
we reorder a “stream” of packets based on the corresponding
stream’s relative order. This eradicates the need for maintain-
ing sequence numbers as we only need to differentiate the
two “streams”, i.e., packets that are in the EX-PATH and
CURRENT-PATH after a new steering decision is made.

For example, if packets are directed to the CURRENT-PATH
and arrive ahead of those in the EX-PATH (resulting in an out-
of-order scenario), we employ a paused FIFO queue to buffer
the CURRENT-PATH packets until all EX-PATH packets have
arrived. Subsequently, the paused FIFO queue releases the
CURRENT-PATH packets. To distinguish between EX-PATH
and CURRENT-PATH, the JUNCTION-UE marks the packets
accordingly during traffic steering between paths (§V-B).

While the mechanism proposed in [39] proves effective
in environments with controlled path latency, such as data
centers, it faces challenges in 5G-WiFi scenarios due to
the presence of time-varying wireless channels and a larger
number of user sessions. To address these issues within the
data plane’s limited resources (up to 128 queues per egress
port [41] on recent programmable switches), we propose
two adaptations: (i) Admission control - Prior to initiating
a reroute on the JUNCTION-UE, it will always verify the
availability of a queue for reordering through the latest RTT
probe. (ii) Reordering timeout - The JUNCTION-UE utilizes
RTT measurements to determine the reordering timeout on the
programmable switch, removing the need for JUNCTION-UPF
to maintain such records as in [39]. Statistical multiplexing
ensures that the required number of queues does not scale
linearly with the number of active user sessions.

Design limitation: With the reordering capabilities on
JuNCTION-UPF, out-of-order packets caused by user mobility
using steering modes that utilize at most one path at a time,
such as active standby and smallest delay, can be effectively
handled. However, for other steering modes that utilize both
paths concurrently, like priority-based and load balance, they
should not be used at the JUNCTION-UE for applications sen-
sitive to uplink out-of-order packets. Fortunately, in the uplink
scenario, steering modes that use both paths are generally less
necessary due to the uplink’s lower bandwidth demands.

JUNCTION-UE JUNCTION-UPF
® RTT "SyN» @ ®
- 1 A
M| [Ewliex] ReT rsYNACK® A=
& — —
@ RTT "Ack" |t=x]|
t=y LSl Al » @
t=z

Figure 8: Round-trip time measurements between JUNCTION-
UE and JUNCTION-UPF.

E. Continuous path measurements

To assess the access network’s availability and measure
round-trip times (RTT), we entrust the primary responsibility
to the JUNCTION-UE, which initiates RTT measurements and
path failure notifications (§V-B).

The RTT measurement flow is depicted in Fig. §, resembling
the TCP three-way handshake. The JUNCTION-UE calculates
the RTT as y — w at), while the JUNCTION-UPF computes
the RTT as z—x at @). By default, RTT measurements are done
periodically for every second. However, if the JUNCTION-UE
is active, the probing rate is increased w.r.t. to the packet rate.

Fast in-network updates: To swiftly adapt to changes in
the access network conditions, we update the computed RTT
directly to the unified traffic steering structure (§V-C2) entirely
in the data plane once the RTT “ACK” is received @ from
either 5G or WiFi. This enables subsequent packets to be
steered based on the latest network information. Concurrently,
the RTT “ACK” is forwarded to the JUNCTION agent. We
follow the same process for path failure notifications received
from the JUNCTION-UE. This approach facilitates real-time
adjustments and ensures the network operates efficiently in
response to varying conditions.

Preventing path state “bouncing”: Since the measure-
ments/notifications are directly updated in the JUNCTION-UPF
data plane, situations may arise where the measured RTT
of the links experiences “flip-flopping,” leading to frequent
path switching. To address this issue, the JUNCTION agent
continuously monitors the received measurement/notification
packets. If such occurrences are detected, the control plane
takes action by suspending direct updates in the data plane
for that specific user until network conditions stabilize. This
measure helps to mitigate the adverse effects of unstable RTT
measurements and ensures a more reliable path selection.

F. JUNCTION agent

The JUNCTION agent serves as the control plane for
JuNCcTION-UPF and fulfills three essential roles. Firstly, it acts
as a PFCP [42] agent, facilitating the conversion of 5G-specific
messages to manage UPF functionalities through P4Runtime,
interacting with the 5G core. Since the current 5G cores lack
support for ATSSS, the JUNCTION agent handles ATSSS user
session management outside of the 5G core. Consequently,
it plays a crucial role in ATSSS session establishment and
management, as well as ATSSS session summarization for
hierarchical lookups (§V-Cl1). Lastly, the JUNCTION agent
continuously monitors time-series changes in user path sta-
tuses through the forwarded RTT “ACK”s. If frequent path

Table I: JUNCTION-UPF’s hardware resource consumption on
the Intel Tofino2. The current configuration supports 256K
users with 2 ATSSS sessions each. We build on top of
PAUPF [40], [44].

Resource P4UPF [40], [44] JUNCTION-UPF
SRAM 38.4% 52.8%
TCAM 10.4% 10.4%
Stateful ALUs 21.3% 26.3%
Hash Bits 11.5% 15.6%
Hash Dist Unit 15.0% 15.0%
VLIW Ins. 11.7% 12.2%

switching due to path instability occurs, the JUNCTION agent
intervenes by suspending direct updates in the data plane until
the network conditions stabilize (§V-E).

G. JUNCTION: Implementation
JUNCTION’s implementation is publicly available at [12].

JUNCTION tunnel: JUNCTION tunnels packets between
JUNCTION-UE and JUNCTION-UPF over UDP with the
JUNCTION header, resulting in a total overhead of 32 bytes.
The JUNCTION header is an 8-byte header consisting 8-bit flag
to indicate the packet type, 8-bit protocol field, 16-bit length,
and 32-bit sequence number.

JUNCTION-UE: We implement a multi-threaded JUNCTION-
UE in ~800 lines of C++. We use the Linux TUN/TAP [43] to
create the tunnels for the individual sessions. The JUNCTION-
UE manages the tunnels and injects the tunnel routes into the
routing table.

JUNCTION-UPF: We build on top of PAUPF [40], [44] and
implement the JUNCTION-UPF in ~1300 lines of P4 [45]
code. We use the Intel P4 studio v9.11.1 to compile and load
JUNCTION-UPF into the Intel Tofino2 switch data plane.

In the downlink, we use match-action tables to implement
the hierarchical lookup table (§V-C1) and two 8-bit register
arrays to realize the unified traffic steering structure (§V-C2).
We update the computed path RTTs directly to the register
arrays (§V-E).

In the uplink, we leverage the queue pause/resume feature
on the Intel Tofino2 to manage out-of-order packets effectively.
We reserve N — 1 queues out of the IV available queues from
an upstream port (e.g., 127 out of 128 queues for a 400 Gbps
port). To restore packet order, an available queue is assigned
to a user, and we use two-way associative hash tables, realized
through two register arrays, to track the available queues.
When a queue is flushed, we generate a packet to update this
structure, freeing the queue for subsequent users.

To address cases where the last EX-PATH packet (that
resumes the paused queue) is lost, we implement a timer using
a “timer” packet that is continuously recirculated once the first
out-of-order packet arrives. Upon queue resumption or expiry,
the “timer” packet is discarded.

Table I presents a comparison of hardware resource uti-
lization between the JUNCTION-UPF and the P4UPF [40]
implementation on the Intel Tofino2 [35]. This configuration
supports 512K GTP sessions, which translates to 256K users

% 31 —*— Nginx-DPDK (Average) -
£ —-®-- Nginx-DPDK (99-percentile) ,

‘2 291 —*— Junction-UPF (Average) /"__—.

g -=¥-- Junction-UPF (99-percentile)_-="

S1 -

o BB ——-p-——g-——

g s

<

o

1 4 16 64 256 1024

Number of Users
Figure 9: Processing latency of Nginx-DPDK and JUNCTION.
Table II: JUNCTION’s power and cost analysis against its CPU

counterpart.

per user # users # servers cost power
throughput per TF2 required ratio ratio
100 Mbps 128,000 125 48.6 29.5

200 Mbps 64,000 226 229 84.7

connected over 5G and WiFi concurrently. For the 256K
users, each can have up to 2 ATSSS sessions. 16K entries are
dedicated to the supplementary part of the hierarchical lookup
table (§V-C1). From Table I, there remain ample hardware
resources remaining to increase the support for the number of
users. We leave further optimizations as future work.

JUNCTION agent: At present, we have not extended the
existing PFCP agent [46] that accompanies PAUPF [44] due
to the lack of ATSSS support on the 5G core [47] we are
utilizing. As a result, we have implemented a separate Python-
based control plane application to manage the JUNCTION-
specific components in the JUNCTION-UPF. Additionally, this
control plane application communicates separately with the
JUNCTION-UE, efficiently handling ATSSS session manage-
ment and other JUNCTION functionalities.

VI. EVALUATION
A. Scalability

To initiate our performance evaluation, we compare the la-
tency performance of JUNCTION with Nginx-DPDK in Fig. 9,
using the same methodology as discussed in §III. The results
clearly indicate that JUNCTION-UPF consistently maintains
deterministic latencies at 28us, even as the number of users
progressively increases from 1024 to 128K. This demonstrates
JUNCTION-UPF’s capability to efficiently handle additional
users while maintaining low packet forwarding latencies.
The outcomes underscore the scalability and reliability of
JUNCTION-UPF, making it suitable for accommodating a
higher number of users with consistently low latencies.

Then, we conduct a power-cost analysis in Table II based
on publicly available information regarding the cost and power
of the Intel Tofino2 [48], [49] utilized in JUNCTION and its
CPU counterpart, the Intel Xeon Gold 6326 [50].

With a capacity of 12.8 Tbps, the Tofino2 can handle up to
128K users at 100 Mbps, ensuring a 3 ms 99th-percentile pro-
cessing latency guarantee. In contrast, the equivalent number
of servers required to achieve the same performance would
be 125. This leads to an exorbitant cost of over 48.6x the
hardware acquisition cost for the Tofino2 switch alone, not to
mention the astounding 29.5 X increase in power consumption.
Furthermore, if the per-user throughput is relaxed to 200 Mbps,

Table III: Testbed hardware and software configuration.

5G Basestation Intel Xeon W-2155; 64GB RAM; USRP
B210 [51]; 20MHz @ 3.5GHz (n78)

Raspberry Pi 4B; WiFi5 20MHz @ 5GHz

Intel NUC with Quectel RM500Q-GL 5G Mod-

ule [52] and Intel AX211 [53] WiFi Modem

WiFi Access Point
UEs (3x)

Intel Xeon Gold 6326;256GB RAM
Ethernet NICs (2x) NVIDIA ConnectX-6 DX 100GbE NIC [34]
Ethernet Switch Intel Tofino2 [35] switch

Servers (2x)

0OS Ubuntu Server 22.04; Linux Kernel v5.15
5G Radio Stack OpenAirlnterface5G [54] (tag 2023.w12) [55]
5G Core OpenAirlnterface 5G Standalone Core (v1.5) [47]

ad

M Tl = S
(a) 5G gNB and WiFi AP. (b) Multi-homed UEs.

Figure 10: Our multi-access testbed in an EMI/RFI-shielded
tent [56] with three 5G-WiFi multi-homed commercial UEs.
The UEs are 1 meter away from the 5G gNB and WiFi AP.

the cost and power would skyrocket even further, reaching an
astonishing 229x the cost of a Tofino2 switch and an 84.7x
higher electricity bill.

The power-cost analysis shows the tremendous advantages
of JUNCTION’s highly efficient design and the substantial cost
and power savings it offers in comparison to using traditional
CPU-based servers to accommodate the same number of users.

B. Steering Engine Validation

Next, we show JUNCTION not only delivers significant
performance gains in §VI-A it does so without compromising
on the ATSSS steering modes’ functionalities.

We evaluate JUNCTION on our 5G-WiFi testbed (see Ta-
ble III) placed within an EMI/RFI-shielded Faraday tent [56]
as depicted in Fig. 10 and validate the proposed unified
structure discussed in §V-C2 on the realization of different
traffic steering modes.

Fast handovers: First, we demonstrate that JUNCTION em-
ulates the behavior of its ATSSS-HL counterpart, MPTCP,
in quickly handing over data traffic between 5G and WiFi
networks using the active-standby traffic steering modes when
the JUNCTION-UE loses access to the WiFi connection at
t = 20. To simulate real-time high-definition video streaming
scenarios, we employ iPerf3 to generate constant bitrate traffic
at 25 Mbps. The recorded throughput of the application is
plotted in Fig. 11. The results show that JUNCTION exhibits
similar responsiveness to changes in link characteristics as
MPTCP, effectively adapting to network conditions while
minimizing disruptions to upper-layer applications.

Link aggregation: We showcase JUNCTION’s capability to
effectively leverage both 5G and WiFi networks simultane-

Junction

UE2-Video

m ~_ o] — lunction ———-- —_ R

g @ 120 3 80 UEL Iperf

Z 30 <100 60

S = =

o p 2 3 UE2 starts 3)

S 20 _g_ f _g 40 videsoatros UE2 switches

[=)] - : o 80 - [[=) WIFINL & to 5G link

210 V\tI|F| Ilnkddtowzn0 : 2 WiFi link , | WiFi link 320 I '\E a

o at around t= H] e down i up c A B :

< N < = PR T WYL A PN |

E ol | oo conosonee. | £ 60 - 0d cmmm AT
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

Time (s) Time (s) Time (s)

Figure 11: Seamless handover through Figure 12: Link aggregation through Figure 13: Low-latency path selection

active standby steering mode.

Table IV: The number of TCP retransmissions w/ and w/o the
uplink packet reordering engine (§V-D1) at JUNCTION-UPF.

average 99th-%ile
w/o Packet Reordering Engine 186.8 219.0
w/ Packet Reordering Engine 1.2 3.0

ously, resulting in higher overall bandwidth through load
balance. In our testbed, both the 5G and WiFi networks
can be saturated at approximately 60 Mbps in the downlink,
respectively. To simulate bandwidth-intensive workloads, such
as large-file downloads, we utilize iPerf3 to generate traffic.

As shown in Fig. 12, the reported aggregated throughput
for JUNCTION closely approaches the sum of the individual
throughputs of 5G and WiFi networks when both are available.
This indicates that JUNCTION efficiently combines the band-
width of both accesses, resulting in higher overall throughput,
comparable to that of MPTCP.

Low-latency path selection: We illustrate JUNCTION’s ca-
pability in reacting to the underlying path conditions under
competition. In Fig. 13, UE1l runs an iPerf3 session over
WiFi with its steering mode set as active standby.w Then,
we introduce UE2 at ¢t = 9 to stream a high-bitrate live video
at 15 Mbps using WiFi — competing with UE1. UE2 uses the
smallest delay steering mode.

Given UEI’s background traffic, the path latency of WiFi
is measured to be higher than that of the 5G path. Thus,
JUNCTION-UPF’s steering engine moves UE2 over the 5G
path due to the lower path latency. Once UE2 leaves the WiFi
network, UE1’s throughput immediately recovers too. Here,
we did not evaluate MPTCP on UE2 given the lack of support
for smallest delay scheduler in the upstream kernel’s MPTCP
implementation [57]. As priority-based shares similar identical
results with smallest-delay, we omit it for brevity.

C. Effectiveness of the Uplink Packet Reordering Engine

We evaluate the effectiveness of JUNCTION’s uplink packet
reordering mechanism (§V-D1). We emulate a scenario where
a user moves across SG and WiFi with different path latencies
using our 5G-WiFi testbed. In our testbed, the end-to-end
latency varies between 2-5ms and 7-15ms for the 5G and WiFi
accesses, respectively. Uplink traffic is generated by uploading
a 7 MB short video. We trigger the JUNCTION-UE to switch
between the links for every 2000 packets. The experiment is
repeated 100 times.

load balance steering mode.

through smallest delay steering mode.

Table V: Increase in supported users using the proposed
techniques — hierarchical table lookups in §V-C1 (“HTL”) and
unified traffic steering structure in §V-C2 (“UTSS”).

ATSSS ses- Naive HTL only ~ UTSS only JUNCTION
sions/user
1 3,022,848 3,702,784 3,022,848 3,702,784
2 1,511,424 1,851,392 1,705,984 3,702,784
4 755,712 925,696 913,408 1,175,552
8 377,856 462,848 473,088 616,448

We measure TCP retransmissions because when reordering
is severe enough, the out-of-order packets are considered lost.
Thus, TCP reduces its sending rate and impacts application
performance. Our evaluations (see Table IV) indicate that TCP
retransmissions are reduced by 155.7x, on average, with the
uplink packet reordering engine in JUNCTION-UPF.

D. JUNCTION Micro-benchmarks

We quantify how the hierarchical lookup table (§V-C1) and
unified steering structure (§V-C2) impact the total number
of users that can be supported. To achieve this, we use
a simplified data plane program and try to maximize the
number of users that that can be supported while saturating the
available memory. From Table V, we observe that JUNCTION
can accommodate 22% more users than the naive approach
when there is one ATSSS session per user. The scalability of
the design becomes more apparent when the number of ATSSS
sessions per user increases to eight, with JUNCTION supporting
up to 1.63x more users than the naive design. This showcases
the efficiency and scalability of our approach, allowing for a
significant increase in the number of supported users while
optimizing memory utilization.

VII. CONCLUDING REMARKS

We present JUNCTION, an end-to-end system that en-
ables the deployment of ATSSS at scale with programmable
switches. We show that JUNCTION-UPF is highly scalable
and at a given traffic volume, it can provide up to 225 x lower
CapEx and 84.7x less OpEx for operators when compared
to software-based proxies. While JUNCTION-UPF’s design is
efficient, it does pose certain limitations regarding the usage of
certain traffic steering modes, e.g., limited support for uplink
reordering. However, considering the scale that JUNCTION
enables for 5G-WiFi convergence, it is a worthwhile trade-
off. We believe JUNCTION can be key to enabling 5G-WiFi
convergence at scale.

[1]

[3]
[4]

[6]

[7]
[8]

[9]
[10]

[11]

[12]
[13]
[14]
[15]
[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
[28]

[29]

[30]

REFERENCES

Ericsson, “Ericsson Mobility Report June 2023, Telefonaktiebolaget
LM Ericsson, Tech. Rep., June 2023.

WBA and NGMN Alliance, “RAN Convergence Paper,” 2019, https:
/Ishorturl.at/FGKQS5.

Cisco, “Cisco Annual Internet Report (2018-2023),” Cisco Systems Inc.,
Tech. Rep., 9 March 2020.

3GPP, “TS 23.501 v16.17.0: System architecture for the 5G System
(5GS),” 2023.

C. Deng, X. Fang, X. Han, X. Wang, L. Yan, R. He, Y. Long, and
Y. Guo, “IEEE 802.11 be Wi-Fi 7: New challenges and opportunities,”
IEEE Comm. Surveys & Tutorials, 2020.

“Tessares 5G Hybrid Access achieves cost-efficient fiber-like speed
on Proximus’ live network,” https://shorturl.at/gwL06 [Accessed: Mar.
2023].

Tessares, “5SG ATSSS,” https://shorturl.at/cqsAO [Accessed: March
2023].

Deutsche Telekom AG, “Deutsche Telekom demonstrates Multipath
for Fixed Mobile Convergence on Campus,” https://shorturl.at/IzZFW?2
[Accessed: July 2023], May 2021.

A. Ford et al., “TCP Extensions for Multipath Operation with Multiple
Addresses,” RFC 8684, Mar. 2020.

L. Roberts, “Beyond moore’s law: Internet growth trends,” Computer,
2000.

T. Pan et al, “Sailfish: Accelerating cloud-scale multi-tenant multi-
service gateways with programmable switches,” in Proceedings of ACM
SIGCOMM, 2021.

“JUNCTION GitHub repository,” The link is hidden for double-blind
review, 2023.

3GPP, “TS 23.501 v17.9.0: System architecture for the 5G System
(5GS),” 2023.

3GPP, “TS 24.193 v17.3.0: 5G System;Access Traffic Steering, Switch-
ing and Splitting (ATSSS); Stage 3,” 2022.

E. Blanton et al., “A conservative loss recovery algorithm based on
selective acknowledgment (SACK) for TCP,” RFC 6675, 2012.

J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and
Secure Transport,” RFC 9000, May 2021.

3GPP, “TR 23.700-93 v17.0.0: Study on access traffic steering, switch
and splitting support in the 5G System (5GS) architecture; Phase 2,”
2021.

Q. De Coninck and O. Bonaventure, “Multipath QUIC: Design and
evaluation,” in ACM CoNEXT, 2017.

A. K. Salkintzis, M. Kiihlewind, S. Rommer, and R. Liebhart, “Multipath
quic for access traffic steering switching and splitting in 5g advanced,”
IEEE Communications Standards Magazine, 2023.

M. Amend et al., “A multipath framework for udp traffic over hetero-
geneous access networks,” 2019.
shadowsocks.org, “shadowsocks-rust,”
shadowsocks/shadowsocks-rust, [Accessed:
e5f0ab9.

CommsUpdate, “KT, Tessares claim first ‘5G low latency multi-radio
access technology’ test on live network,” https://shorturl.at/buQWY
[Accessed: July 2023], 2019.

M. Baerts et al., “Leveraging the O-rtt convert protocol to improve
wi-fi/cellular convergence,” in Proceedings of the Applied Networking
Research Workshop, 2021.

A. Balasubramanian et al., “Augmenting mobile 3g using wifi,” in
Proceedings of the 8th international conference on Mobile systems,
applications, and services, 2010.

D. Laselva et al., “3gpp lte-wlan aggregation technologies: Functional-
ities and performance comparison,” I[EEE Communications Magazine,
2018.

3GPP, “TS 23.234 v13.1.0: 3GPP system to Wireless Local Area
Network (WLAN) interworking; System description,” 2017.

Aruba Networks, “White paper - 802.11ac in-depth,” https://shorturl.at/
hnDIJ [Accessed: Mar. 2023], 2014.

Intel, “Next generation wifi: Wifi 7 and beyond,” https://shorturl.at/
BLNQZ [Accessed: Mar. 2023], 2020.

ITU, “Itu-r faq on international telecommunications
https://www.itu.int/en/ITU-R/Documents/ITU-R-FAQ-IMT.pdf
[Accessed: Mar. 2023].

T. W. Bank, “Mobile cellular subscriptions (per 100 people),” https:
//data.worldbank.org/indicator/IT.CEL.SETS.P2, [Accessed: July 2023].

GitHub, https://github.com/
Jan 2023], commit:

(imt),”

(38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]

(471

[48]
[49]
[50]
[51]
[52]
(53]
[54]
[55]
[56]

[57]

D. Kumar et al., “Scaling telecom core network functions in public cloud
infrastructure,” in IEEE CloudCom. IEEE, 2020.
F5, Inc, “Nginx,” https://www.nginx.com/ [Accessed: July 2023], 2023.

Tencent Cloud, “F-stack,” https://github.com/F-Stack/f-stack [tag:
v1.22], 2022.
NVIDIA, “NVIDIA Connect X-6,” https://www.nvidia.com/en-sg/

networking/ethernet/connectx-6 [Accessed: March 2023].

“Intel Tofino 2,” https://shorturl.at/IUYZ5 [Accessed: July 2023].

X. Jin et al., “Netcache: Balancing key-value stores with fast in-network
caching,” in SOSP, 2017.

R. Miao et al., “Silkroad: Making stateful layer-4 load balancing fast
and cheap using switching asics,” in Proceedings of ACM SIGCOMM,
2017.

P. Bosshart et al., “Forwarding metamorphosis: Fast programmable
match-action processing in hardware for sdn,” SIGCOMM CCR, 2013.
C. Song et al., “Network Load Balancing with In-network Reordering
Support for RDMA,” in Proceedings of ACM SIGCOMM, 2023.

R. MacDavid et al., “A P4-Based 5G User Plane Function,” in Proceed-
ings of the Symposium on SDN Research, 2021.

J. Lee, “Advanced Congestion & Flow Control with Programmable
Switches,” 2020, https://shorturl.at/cFM16.

3GPP, “TS 29.244 v17.9.0: Interface between the Control Plane and the
User Plane nodes,” 2023.

M. Krasnyansky, “Universal tun/tap device driver,” https://docs.kernel.
org/networking/tuntap.html.

Open Networking Foundation, “Fabric-TNA,”
stratum/fabric-tna.git [Commit: fd3c3f0].

P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Computer Communication Review, 2014,
Open Networking Foundation, “Upf,” https://github.com/omec-project/
upf [commit: 35f11a7].

EURECOM, “Openair-cn-5g: An implementation of the 5g core network
by the openairinterface community.” https://gitlab.eurecom.fr/oai/cn5g/
oai-cnSg-fed [tag: v1.5.0], 2023.

Intel Corporation, “Intel® tofino 2 12.8 tbps, 20 stage, 4 pipelines,”
2018, https://shorturl.at/gquy5 [Accessed: March 2023].

“Intel Tofino2 — A 12.9 Tbps P4-Programmable Ethernet Switch,” https:
/fshorturl.at/prvCW [Accessed: Mar. 2023], 2020.

Intel Corporation, “Intel® xeon® gold 6326 processor,” 2021, https:
/fshorturl.at/sDH39 [Accessed: July 2023].

E. Research, “Usrp b210 usb software defined radio (sdr),” https://www.
ettus.com/all-products/ub210-kit/ [Accessed: June 2023].

Quectel, “5g rm50xq series,” https://www.quectel.com/product/
5g-rm50xq-series [Accessed: June 2023].

Intel, “Intel® Wi-Fi 6E AX211,” https://shorturl.at/hjsX8 [Accessed:
June 2023], 2021.

F. Kaltenberger et al., “Openairinterface: Democratizing innovation in
the 5g era,” Computer Networks, 2020.
EURECOM, “Openairinterface,”
openairinterface5g [tag: 2023.w12], 2023.
Holland Shielding Systems BV, “EMI/RFI-shielded Faraday tent,” https:
/fshorturl.at/zHSUY [Accessed: July 2023].

“Linux mptcp upstream project,” https://github.com/multipath-tcp/
mptcp_net-next/wiki/#changelog [Accessed: July 2023].

https://github.com/

https://gitlab.eurecom.fr/oai/

https://shorturl.at/FGKQ5
https://shorturl.at/FGKQ5
https://shorturl.at/gwL06
https://shorturl.at/cqsA0
https://shorturl.at/lzFW2
https://github.com/shadowsocks/shadowsocks-rust
https://github.com/shadowsocks/shadowsocks-rust
https://shorturl.at/buQWY
https://shorturl.at/hnDIJ
https://shorturl.at/hnDIJ
https://shorturl.at/BLNQZ
https://shorturl.at/BLNQZ
https://www.itu.int/en/ITU-R/Documents/ITU-R-FAQ-IMT.pdf
https://data.worldbank.org/indicator/IT.CEL.SETS.P2
https://data.worldbank.org/indicator/IT.CEL.SETS.P2
https://www.nginx.com/
https://github.com/F-Stack/f-stack
https://www.nvidia.com/en-sg/networking/ethernet/connectx-6
https://www.nvidia.com/en-sg/networking/ethernet/connectx-6
https://shorturl.at/IUYZ5
https://shorturl.at/cFM16
https://docs.kernel.org/networking/tuntap.html
https://docs.kernel.org/networking/tuntap.html
https://github.com/stratum/fabric-tna.git
https://github.com/stratum/fabric-tna.git
https://github.com/omec-project/upf
https://github.com/omec-project/upf
https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-fed
https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-fed
https://shorturl.at/gquy5
https://shorturl.at/prvCW
https://shorturl.at/prvCW
https://shorturl.at/sDH39
https://shorturl.at/sDH39
https://www.ettus.com/all-products/ub210-kit/
https://www.ettus.com/all-products/ub210-kit/
https://www.quectel.com/product/5g-rm50xq-series
https://www.quectel.com/product/5g-rm50xq-series
https://shorturl.at/hjsX8
https://gitlab.eurecom.fr/oai/openairinterface5g
https://gitlab.eurecom.fr/oai/openairinterface5g
https://shorturl.at/zHSUY
https://shorturl.at/zHSUY
https://github.com/multipath-tcp/mptcp_net-next/wiki/#changelog
https://github.com/multipath-tcp/mptcp_net-next/wiki/#changelog

	Introduction
	Background and Related Work
	ATSSS
	Related Work

	Motivation: Limitation of Software Proxies
	Challenges
	Junction: Design and Implementation
	Overview of Junction
	Junction-UE
	ATSSS session establishment and management
	Uplink/downlink packet processing
	Continuous path measurements and reporting

	Junction-UPF: Downlink Packet Processing
	Hierarchical ATSSS session lookup
	Unified traffic steering structure
	Implementing different traffic steering modes

	Junction-UPF: Uplink packet processing
	Restoring packet order with FIFO queue pausing

	Continuous path measurements
	Junction agent
	Junction: Implementation

	Evaluation
	Scalability
	Steering Engine Validation
	Effectiveness of the Uplink Packet Reordering Engine
	Junction Micro-benchmarks

	Concluding Remarks
	References

