
In-Network Techniques for Highly Reliable
Datacenter Networks

Raj Joshi

National University of Singapore
2022

In-Network Techniques for Highly Reliable
Datacenter Networks

Raj Joshi
(B.E.(Hons.), BITS Pilani)

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE
SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2022

Supervisor:
Associate Professor Ben Leong Wing Lup

Collaborator:
Professor Chan Mun Choon

Examiners:
Assistant Professor Jialin Li

Associate Professor Richard MA Tianbai

Declaration

I hereby declare that this thesis is my original work and it has been written by me in its

entirety. I have duly acknowledged all sources of information which have been used in the

thesis.

This thesis has not been submitted for any degree in any university previously.

—————————–

Raj Joshi
December 11, 2022

Dedication

To my late mother (aAI), my strength, my inspiration.

Acknowledgements

This section is quite long and I am unapologetic about it – it is just due to the sheer number of people

who have been a part of this incredible journey.

I would like to express my deepest gratitude to my advisor Ben Leong for his unwavering support

and guidance over the years. Throughout the course of my PhD, he has helped instill a sense of scientific

rigor in me – be it while doing experiments or writing a paper. By being a staunch critic of my ideas, Ben

has helped me watch out for potential pitfalls in the early stages of my projects. Through the countless

challenges and hardships of my PhD journey, one of the things that has kept me going is his encouraging

advice that if we work hard, do the right thing, good things will happen! Beyond research, he has also

shown me what it means to be a good teacher and a good human being. My PhD has been the most

challenging phase of my life so far, more due to the circumstances outside of research. Ben has went

way beyond the call of his duty to support me in all possible ways, even extraditing me out of difficult

situations. There have been several moments when I have felt extremely vulnerable. But during such

times, I always found a sense of security in the feeling that no matter how much things go south, Ben

will always have my back. I could not have asked for a better advisor and a godfather-like mentor.

I have been incredibly fortunate to have Mun Choon Chan as a collaborator, mentor and an unof-

ficial co-advisor. His enthusiasm of working closely with his students and being hands-on with code or

experiment data always made me feel that I am working “with” him rather than “under” him. He has

been a staunch supporter of my ideas and has backed them since inception till paper publication, while

still being critical of the problematic aspects. Faced with deepest technical issues, his timely advice has

helped me find the right solutions. His ever-balanced view of things always ensured that I look at both

the positive and critical aspects, and not just the critical aspects. After nearly every meeting with him,

I have found more clarity of thought and felt more encouraged. I could not have asked for a better

combination of advisors than what I found in both Ben and Mun Choon.

I have been fortunate to have a set of wonderful collaborators working with whom was really fun.

They include Pravein Govindan Kannan, Ayush Mishra, Nishant Budhdev, Qu Ting, Boon Thau Loo

(from UPenn), Chahwan Song (Mason), Xin Zhe Khooi, and Mobashir Mohammad. I also had the plea-

viii

sure of working with and mentoring some very talented interns, notably Harsh Gondaliya and Deepanshu

Jindal. Several colleagues in the lab have been very helpful with their feedback on my papers, talks or by

just being a listening ear or a sounding board. Thank you Aditya Kulkarni, Oana Barbu, Zixiao Wang,

Xiangyun Meng, Wang Qiang, Ebram Kamal William, Nitya Lakshmanan, and Soundarya Ramesh for

being an important part of my time at graduate school. I would also like to thank Shweta Shinde for

her super helpful advice, inspiration and encouragement from time to time throughout this journey.

I must also thank all the “backstage actors” who have contributed to this research and whose names

have not appeared even in the acknowledgement sections of my papers (page limit constraints!). I have

been fortunate to have excellent support from the admin staff of my school. They have played a crucial

role in handling grants, equipment purchases, intern appointments, moving to COM3 (new building), and

so many other peripheral tasks that helped support my research. Thanks are due to the entire HR, admin

and building facilities teams with a special mention for Iris Chang who has been truly phenomenal in her

admin support. I would also like to thank the customer support and engineering teams of fs.com who

provided unprecedented support in supplying the research equipment I needed, sometimes doing special

customizations to support my very specific requirements. Thanks are also due to Aung Nyein Kyaw

(affectionately known as “bro”) for running the “Cool Spot” drinks and snacks stall even on Sundays

and public holidays.

I feel incredibly blessed to have the infinite support and love of my family. It is only due to my

mother’s many struggles and sacrifices that I am where I am today. She has been a constant source of

moral support and strength for me. Destiny separated us (physically) a bit too early. But she continues

to inspire me to be a fighter like her! I owe her this thesis and much more. I feel incredibly lucky to

have a twin brother, Ravi Joshi, who has been unwavering in his support – right from my decision to

pursue a PhD till date. Being always a bit more experienced than me in his PhD journey, he has been a

constant guiding light throughout my PhD journey. I would also like to thank my cousin brother, Vinit

Belwalkar, who was of immense help during the time when I juggled between taking care of my mother’s

cancer treatment and working on research papers – few of which received best paper awards! Thanks

are also due to the newest and sweetest member of the family, my sister-in-law Tanvi Shirali, for all her

love and care in the recent years. I have also been blessed to have a family friend, Anjanie Giggard, who

has been keeping a motherly watch on me in the recent years.

I have had the privilege to have a wonderful bunch of friends who bring so much cheer and joy in

my life. Thanks to Ashish Dandekar, Suparna Ghanvatkar, Omkar Kulkarni and Apurva Kulkarni for

being my family here in Singapore. All of you have been of immense help and support during several

critical phases of my PhD – be it waking me up during important deadlines or taking care of me when I

have been sick. Suparna has been the central pillar of my support system in Singapore who was always

there by me through all the good and bad days in the recent years. She has also been a trusted advisor

for anything from inter-personal relations to statistical data analysis in Python. Akanksha Tiwari and

ix

Tapeesh Sood have also been a great support right from the beginning of my PhD. I would also like to

thank my long time friends, Kriti Aggarwal, Shivam Rai, and Kirti Bhandari for always believing in me

and being there at the critical junctures of my life.

Last but not the least, I would like to thank a few people in the networking research community for

their support when I needed it the most. Thank you Radhika Niranjan, Changhoon Kim, Yiting Xia,

Sergey Gorinsky, Venkat Padmanabhan, and Sujata Banerjee for your support through the abysmally

short personal interactions I had with you.

Contents

Abstract i

List of Publications iii

List of Figures v

List of Tables ix

1 Introduction 1

1.1 Challenges in providing tail FCT SLA Guarantees 3
1.1.1 FCT increase due to congestion events . 3
1.1.2 FCT increase due to network failure events 5

1.2 The In-Network Approach . 8
1.2.1 Why the In-network approach works? . 10

1.3 Summary of Thesis Contributions . 12
1.3.1 BurstRadar . 12
1.3.2 SQR . 13
1.3.3 LinkGuardian . 14

1.4 Thesis Structure . 16

2 Related Work 17

2.1 Handling Congestion Events . 17
2.1.1 Monitoring Microbursts . 19

2.2 Handling Link Failure Events . 22
2.2.1 Handling Fail-stop Link Failures . 23
2.2.2 Handling Gray Link Failures . 25

3 BurstRadar 31

3.1 Introduction . 32
3.2 System Design . 35

3.2.1 Snapshot Algorithm . 36
3.2.2 Courier Packet Generation . 39
3.2.3 Ring Buffer . 39

xii CONTENTS

3.2.4 Implementation . 41
3.3 Evaluation . 42

3.3.1 Efficiency . 44
3.3.2 Handling Concurrent Microbursts . 45
3.3.3 Resource Utilization . 47

3.4 Summary . 47

4 SQR 49

4.1 Introduction . 50
4.2 Motivation . 55
4.3 SQR Design . 58

4.3.1 Caching Packets on the Switch. 60
4.3.2 Multi-Queue Ring Architecture . 61
4.3.3 Delay Timer . 62
4.3.4 Dynamic Queue Selection . 63
4.3.5 Packet Order Logic . 65
4.3.6 Implementation . 66

4.4 Performance Evaluation . 67
4.4.1 Experimental setup . 67
4.4.2 Masking Link Failures from TCP . 69
4.4.3 Latency-sensitive Workloads . 72
4.4.4 Overhead . 74

4.5 Discussion . 77
4.6 Summary . 79

5 LinkGuardian 81

5.1 Introduction . 82
5.2 The Case for Mitigating Link Corruption . 86

5.2.1 Impact of Higher Link Speeds . 86
5.2.2 Most flows are short flows . 87
5.2.3 Impact of RDMA Workloads . 88

5.3 LinkGuardian . 90
5.3.1 Fast ACKs for minimum Buffer Overhead 93
5.3.2 Tail Losses for Single-Packet Flows . 93
5.3.3 Reordering Buffer without Overflow . 94
5.3.4 Mitigating Potential ReTx Losses . 96
5.3.5 Implementation Details . 97
5.3.6 Repairing Corrupting Links in Practice 99

5.4 Evaluation . 100
5.4.1 Parameter Tuning . 103
5.4.2 Effective Loss Rate & Link Speed . 104
5.4.3 Impact on Transport Protocols . 106
5.4.4 Tail Packet Loss and Short Flows . 108

CONTENTS xiii

5.4.5 Contribution of different mechanisms . 112
5.4.6 Overhead . 113
5.4.7 Comparison with Wharf . 115
5.4.8 Effectiveness in large-scale deployment . 116

5.5 Discussion and Future work . 120
5.6 Summary . 123

6 Conclusion and Future Directions 125

6.1 Future Directions . 126
6.1.1 Temporal packet buffering beyond handling link failures 126
6.1.2 Better dataplane primitives for temporal packet buffering 126
6.1.3 Fast and Efficient Monitoring of Link Failures 127
6.1.4 Scaling to future link speeds . 128
6.1.5 Adoption in practice . 130

6.2 Summary of Thesis Contributions . 131

Appendices 135

A LinkGuardian 135

A.1 Protocol Details . 135
A.1.1 Loss Detection & Notification . 135
A.1.2 Sender-side Buffering & Retransmission 137

A.2 Monitoring Links for Corruption . 138
A.3 Link Corruption Trace Generation . 138

Bibliography 141

Abstract

Datacenters power today’s large-scale Internet services such as web search, video streaming,

e-commerce, and social networks for billions of users around the world. Within the datacenters,

these large-scale services are realized through distributed applications running on thousands

of servers which are connected by the datacenter network. The data transfers (called flows)

between these distributed applications need to complete as quickly as possible because the

flow completion time (FCT) directly impacts user experience, and thus revenue. Therefore,

datacenter networks have stringent service-level requirements (SLAs) to guarantee that the

worst-case (tail) FCTs have a tight bound. Bounding the tail FCTs in the datacenter network

environment is challenging as network congestion events can cause arbitrary increase in FCTs

and affect the SLAs. Further, link failures, which are a norm in datacenter networks, cause

packet loss which also increases FCTs by several fold. In this thesis, we propose three in-

network techniques to mitigate the increase in tail FCTs in the face of transient congestion

events and link failures.

While significant prior work has been done on datacenter congestion control, in practice,

complex interactions between application traffic can still lead to transient congestion events

(called microbursts) and increase the FCTs. Mitigating microbursts requires continuous and

careful tuning of system parameters based on a thorough understanding of the microbursts

occurring in the network. To this end, we design and implement BurstRadar a system that op-

erates in the network dataplane and monitors microbursts by efficiently capturing the telemetry

information for every packet involved in microbursts. Our evaluation on a multi-gigabit testbed

shows that BurstRadar incurs 10 times less data collection and processing overhead than existing

solutions.

Besides transient congestion events, packet drops due to link failures also increase the tail

FCT by several fold. In datacenter networks, links can fail either completely (fail-stop failure)

or partially (gray failure). Both types of link failures lead to packet loss that impacts tail

FCTs. Existing techniques for managing fail-stop link failures cannot completely eliminate

packet loss during such failures. To this end, we propose Shared Queue Ring (SQR), an on-

switch mechanism that completely eliminates packet loss during link failures by diverting the

affected flows seamlessly to alternative paths. SQR is implemented in the network dataplane

ii Abstract

using dataplane-programmable switches. Our evaluation on a hardware testbed shows that

SQR can completely mask link failures and reduce tail FCT by up to 4 orders of magnitude for

latency-sensitive flows.

A link with gray failure randomly drops packets due to bit corruption and such packet loss

is significant in datacenter networks. Previous attempts to mitigate packet corruption loss seek

to avoid the faulty links by routing around them, at the cost of reduced network capacities and

disruption to the rest of the network. In this thesis, we investigate the feasibility and tradeoffs

of the classical loss recovery strategy of link-local retransmissions in the context of datacenter

networks. We present the design and implementation of LinkGuardian, a dataplane-based

protocol that detects the packets lost due to corruption and retransmits them while preserving

ordering. Our results show that for a 100G link with a loss rate of 10-3, LinkGuardian can

reduce the loss rate by up to 6 orders of magnitude while incurring only 9% reduction in

the link’s effective link speed. By detecting and eliminating tail packet losses, and avoiding

timeouts, LinkGuardian improves the 99.9th percentile FCT for TCP and RDMA by 18x and

160x respectively.

In summary, in this thesis, we demonstrate that it is possible for datacenter networks to

perform reliably in view of transient congestion events as well as link failures using in-network

techniques that leverage dataplane-programmable switches.

List of Publications

1. Raj Joshi, Ting Qu, Mun Choon Chan, Ben Leong and Boon Thau Loo, “BurstRadar:
Practical Real-time Microburst Monitoring for Datacenter Networks”. Proceedings of the
9th ACM Asia-Pacific Workshop on Systems (APSys 2018). Jeju Island, South Korea.
August 2018. [Chapter 3]

2. Raj Joshi, Ben Leong, Mun Choon Chan, “TimerTasks: Towards Time-driven Execution
in Programmable Dataplanes”. Proceedings of the ACM SIGCOMM 2019 Conference
Posters and Demos (SIGCOMM 2019, Poster). Beijing, China. August 2019. [Chapter 5]

3. Ting Qu*, Raj Joshi*, Mun Choon Chan, Ben Leong, Deke Guo and Zhong Liu, “SQR:
In-network Packet Loss Recovery from Link Failures for Highly Reliable Datacenter Net-
works”. Proceedings of the 27th IEEE International Conference on Network Protocols
(ICNP 2019). Chicago, Illinois, USA. October 2019. [Chapter 4]
(Awarded Best Paper.)(* equal contribution)

4. Raj Joshi, Qi Guo, Nishant Budhdev, Ayush Mishra, Mun Choon Chan, Ben Leong,
“LinkGuardian: Mitigating the impact of packet corruption loss with link-local retrans-
mission”. Proceedings of the 6th Asia-Pacific Workshop on Networking (APNet 2022).
Fuzhou, China. [Chapter 5]

5. Raj Joshi, Cha Hwan Song, Nishant Budhdev, Xin Zhe Khooi, Mun Choon Chan, Ben
Leong, “Masking Corruption Packet Losses in Datacenter Networks with Link-local Re-
transmission”. Under Submission (Long Paper). [Chapter 5]

List of Figures

1.1 Lifecycle of managing unpredictable congestion events in datacenter networks. . . 5
1.2 Problem space for bounding tail FCTs in datacenter networks 8

2.1 Example operation of In-band Network Telemetry (INT) to monitor microbursts 20
2.2 cwnd size distribution for short flows . 24
2.3 Design space for mitigating corruption packet loss due to gray link failures in

datacenter networks. 25
2.4 A single pod from Facebook’s state-of-the-art datacenter network. Image adapted

from: Alexey Andreyev, Facebook [12]. 27

3.1 General architecture of a programmable switching ASIC [49] 36
3.2 Evolution of an example queuing microburst at different instants in time 37
3.3 Cloning and serialization delay for packets of different sizes 41
3.4 Testbed setup . 42
3.5 Fraction of total number of packets processed for different latency-increase thresh-

olds . 43
3.6 Number of extra packets marked compared to the Oracle solution for different

packet size distributions (Cache Traffic) . 44
3.7 Fraction of microburst packets missed with concurrent microbursts for different

ring buffer size . 46

4.1 Design space for link failure management. 51
4.2 Testbed. 55
4.3 FCTs of latency-sensitive web search flows [8] under link failures with Share-

Backup as route recovery mechanism. 57
4.4 Caching packets on switch using a FIFO queue. 59
4.5 Multi-Queue Ring architecture. 62
4.6 Flow size distributions used in evaluation. 69
4.7 TCP sender’s cwnd and seq number progression for SB′ with and without SQR.

Link failure occurs after about 2 seconds. 70
4.8 Recovery time. 71
4.9 Number of packets lost for different route failure time. 71

vi LIST OF FIGURES

4.10 FCTs of latency-sensitive web search flows [8] under link failures with SB′+SQR

as route recovery mechanism. 72
4.11 FCTs of failure-hit web search flows [8] compared to no failure. 72
4.12 CDF of FCTs for two workloads under link failures. 73
4.13 Steady-state packet buffer consumption (per-port). 74
4.14 Impact of SQR processing on normal line-rate traffic. 75

5.1 Effect of optical attenuation on high speed Ethernet standards with higher bau-

drates and denser modulation. 82
5.2 Distribution of corruption loss rates and time-varying corruption on a single link

as observed by Zhuo et al. [192] . 86
5.3 Flow size distribution of several industry datacenter workloads from 2008 to

2019 [8, 16, 119, 154, 166]. 88
5.4 Top 1% FCTs for 143B flows on a 25G link with and without 10-3 corruption

packet loss. 89
5.5 LinkGuardian Design Overview. 91
5.6 Logical view of receiver-side ingress buffer (recirculation port queue). 95
5.7 Distribution of consecutive packets lost. 98
5.8 Testbed with Variable Optical Attenuator (VOA). 101
5.9 Variable Optical Attenuator (VOA) setup used in the motivation and evaluation

experiments. 101
5.10 Delay observed by LinkGuardian receiver switch to receive retransmission from

the time the loss was detected. 102
5.11 tflight resume delay observed by receiver switch. 104
5.12 Effective loss rates achieved by LinkGuardian and the corresponding effective

link speeds. 105
5.13 Performance of LinkGuardian for CUBIC, DCTCP, and BBR Transport Protocols.107
5.14 DCTCP on a 25G link with 10-3 loss, with PFC-based backpressure disabled. . . 108
5.15 Top 1% FCTs for 143B flows on a 100G link. 109
5.16 Top 5% FCTs for 24,387B flows (17 pkts) on a 100G link. 110
5.17 LinkGuardian’s packet buffer usage for different link speeds and packet loss rates.

Whiskers show min, max, 25th, 50th, 75th percentiles. 114
5.18 Simulation results for Facebook fabric topology (100K optical links) when the

capacity constraint is 50%. 118
5.19 Simulation results for Facebook fabric topology (100K optical links) when the

capacity constraint is 75%. 119
5.20 For the entire simulation period of 1 year, the CDF of (a) The ratio of total

penalty of vanilla CorrOpt to that of LinkGuardian + CorrOpt; and (b) Decrease

in least capacity per pod of LinkGuardian + CorrOpt compared to vanilla CorrOpt.120

6.1 Priority order for infrastructure work at Google Cloud [172] 131

LIST OF FIGURES vii

A.1 State maintained by LinkGuardian switches and different types of packets that

read/update it. 135
A.2 Sender-side buffering and Retransmission. 137

List of Tables

3.1 Hardware resource consumption of BurstRadar (ring buffer size of 1k entries)

compared to the baseline switch.p4 . 47

4.1 ASIC packet buffer trends . 53
4.2 Resource consumption of SQR compared to switch.p4 77

5.1 Top 1% FCT (µs) for 24,387B DCTCP flows for different LinkGuardian mecha-

nisms: tail loss handling (“Tail”) and preserving packet order (“Order”) 113
5.2 Recirculation overhead (% pipe forwarding capacity) 114
5.3 TCP CUBIC goodput (Gb/s) on a 10G Link . 116

Chapter 1
Introduction

Datacenters, also colloquially known as the “cloud”, are central to hosting and running

today’s large-scale Internet services ranging from web search and e-commerce to video

streaming, conferencing, and social networking. The wide-spread and ever-increasing

Internet access has driven the growth of these Internet services that serve billions of

users around the world today [169]. Furthermore, with the recent COVID-19 pandemic

pushing more businesses and socioeconomic activities online, the global cloud comput-

ing market size is expected to grow to USD 947.3 billion by 2026 [124]. For ensuring

scalability and reliability, these large-scale Internet services are often implemented as

distributed applications that run across a large number of servers connected by a net-

work [96]. Consequently, today’s datacenters are massive computing infrastructures with

hundreds of thousands of servers interconnected by a large and high-speed network with

peta-bit scale bandwidth at its core [164].

Majority of today’s Internet services that are hosted and run by the datacenters are

soft real-time [8]. This is because they are latency-sensitive and the failure to meet the

response deadline adversely impacts user experience and thus revenue [8, 34, 50, 85, 157,

168]. For example, experiments at Amazon showed that increased latency in page load

times led to decrease in online sales while at Google increase in search results display

2 Introduction

time led to decrease in revenue [113]. A study by Akamai shows that a delay of 100 ms in

website load time can hurt the conversion rate1 by 7% [4]. Besides directly affecting the

revenue, Internet service providers, in certain situations, also suffer additional losses in

terms of compensation to customers when the performance and availability guarantees

are not met [170].

The total permissible latency for an Internet service is determined by customer im-

pact factors of the specific service [114]. After excluding the Internet and the client

rendering delays, what remains is the “backend latency” limit which needs to be met

by the distributed applications running in the datacenter [8]. This backend latency

budget gets further divided into server processing and network communication stages

required by the distributed applications implementing the Internet service [96, 173].

The typical request/query processing workflow of an Internet service consists of many

sequential stages involving parallelization across 1000s of servers and aggregation of re-

sponses across the network [96]. For example, the processing workflow for a Bing search

query on average involves 15 stages where 10% of stages process the query in parallel

on 1000s of servers [96]. Similarly, a popular page load request on Facebook can require

fetching 1000s of distinct objects distributed across 100s of memcached servers [142].

As the processing workflows involve 1000s network communications (flows), 10s of them

occurring serially, the latency budget for each individual flow is on the order of microsec-

onds [9, 20]. In this way, the user-level service deadlines ultimately translate into flow

completion time (FCT) targets for the network communication between the distributed

applications within the datacenter [180]. As a result, the tail (worst-case) flow comple-

tion times (FCTs) of datacenter network communication have a direct impact on the

user-level service deadlines and thus the revenue [51]. Consequently, datacenter network

operators are required to provide stringent SLA guarantees on tail FCTs at a microsec-

ond scale [8, 51, 68, 142, 155]. For example, even if the SLA guarantees 99.9% of the
1percentage of website visitors that take a desired action.

1.1 Challenges in providing tail FCT SLA Guarantees 3

flows to complete within a bounded time, for processing requests involving 100 flows,

the probability that at least one of the 100 flows will face higher FCT and affect the

overall request processing is ∼9.5%.

We note that apart from the flow completion times of network data transfers (flows),

the tail performance of request processing in datacenters is also affected by the tail

performance of the involved server processing [96]. There is a separate body of literature

for addressing tail performance due to server processing [52, 118, 126]. However, in this

thesis, we focus on the network-related sources of tail performance i.e. the FCTs for the

network flows.

In the following subsection, we describe the challenges involved in providing SLA

guarantees on tail FCTs in today’s datacenter networks.

1.1 Challenges in providing tail FCT SLA Guarantees

Providing a tight bound on tail FCTs in today’s datacenter networks is challenging as

several factors can lead to abnormal increase in the FCTs and violate the SLAs. Broadly,

the various factors can be categorized into two main categories - congestion events and

failure events. We elaborate on them below.

1.1.1 FCT increase due to congestion events

Several links in a datacenter network are shared across 1000s of servers. Depending

on the traffic patterns, these links can become congested (at short timescales) causing

packet queues to build up on switches. Such queue build ups cause transmission delays

and increase the tail (worst-case) FCTs. It is, therefore, not surprising that a significant

amount of prior work has been done on datacenter congestion control [8, 9, 10, 17, 76,

83, 87, 149, 173, 180] and load balancing [7, 109] to keep the queue occupancies low

and thereby prevent increase in the tail FCTs. Yet, unpredictable congestion events

4 Introduction

(microbursts) can still occur due to different operating conditions (compared to the

original design) and due to complex unanticipated interactions of different flows. We

elaborate on these below.

Many of these prior designs are based on the assumptions that may not hold in prac-

tice. For example, although DCTCP was designed to keep the queue occupancies low [8],

Judd [101] reported that in their deployment of DCTCP in Morgan Stanley datacen-

ters, it did not keep the queue occupancies low under certain conditions and required

further tuning based on the link speeds and traffic characteristics. Also, application

traffic patterns evolve over time which can invalidate some of the previous assumptions.

For example, for a web search workload, less than 1% flows were reported to have flow

sizes less than 1000 bytes in 2010 [8] compared to 95% flows in 2018 [134]. Also, much

of the prior work focuses on preventing “systematic” congestion events under assumed

operating conditions and therefore cannot prevent the unpredictable congestion events

that arise from complex unanticipated interactions between flows. For example, Google’s

datacenter network fabric supports thousands of distinct applications and services [164],

each with different traffic characteristics. Furthermore, different applications can employ

different congestion control algorithms, especially in multi-tenant datacenters. Due to

different application requirements, having a mix of congestion control is possible even

when the datacenter is under a single administrative control [101]. This leads to complex

and unanticipated interactions between flows as there is no precise control over how in-

dependent flows interact with each other at the network switches along their paths [97].

Other factors leading to microbursts include TCP incast in partition-aggregate traffic

patterns [8, 115], occasional synchronization of application traffic [105], TCP segment

offloading or application-level batching [160]. Popular webservices such as LinkedIn have

reported the occurrence of microbursts leading to increased network latency [103]. Mea-

surements from Facebook datacenter estimate that microbursts can occur as frequently

as 200 µs and last 100’s of µs [188]. In today’s datacenter networks, since the normal

1.1 Challenges in providing tail FCT SLA Guarantees 5

Congestion Control, AQM,
Application-level parameters

Production
Deployment

Continuous Congestion
Event Monitoring

Feedback/tuning

Figure 1.1: Lifecycle of managing unpredictable congestion events in datacenter net-
works.

end-to-end network delays are on the order of 10’s of µs [60], an occasional 100 µs queuing

delay becomes unacceptable and affects the SLAs [189].

Overall, it not plausible to design congestion control, load balancing and active queue

management (AQMs) schemes for a datacenter network that take into account all pos-

sible complex interactions and work together to keep the tail FCTs low. In other words,

handling congestion events with the management strategy of “design, deploy and forget”

is not possible since unpredictable congestion events are likely to occur due to unantici-

pated interactions. Instead there is a need to continuously monitor unpredictable conges-

tion events, find their causes, and use this information to mitigate future occurrences by

adapting the deployed congestion control, AQMs, load-balancing, etc. Figure 1.1 shows

this management strategy where, post deployment, continuous monitoring of congestion

events provides the feedback required to fine-tune and adjust the deployed schemes such

that the current causes of unpredictable congestion events are eliminated.

1.1.2 FCT increase due to network failure events

Another major cause of increase in FCT is network failure events that typically cause

packet loss. In this thesis, we focus on network link failures as they are more prevalent

compared to network device failures [73]. Network link failures are of two types: (i) Fail-

stop link failures: when the network link connection between two network devices

is completely “down”. (ii) Gray link failures: when the network link connection

6 Introduction

between two network devices is “up”, but the link corrupts certain packets. Both types

of link failures result in packet loss. The packet loss could be transient if the network

management system is able to detect the link failures and route traffic such that it avoids

the failed link. However, for short-latency sensitive flows, even a small amount of packet

loss can increase the FCT by several fold [152]. Below we provide further details on the

two types of link failures.

Fail-stop link failures. Fail-stop link failures occur when one or more of the hard-

ware components forming the link fail. These components include line cards, transceivers,

fiber/copper cables, etc. They can also be caused by connection problems due to carrier

signaling/timing issues [62]. Datacenter networks typically use commodity hardware

in order to trade-off significant hardware costs for slightly reduced reliability [21, 193].

While the individual network components have a small but non-zero failure rate, with

thousands of switches and tens of thousands of links in a datacenter, the aggregate

link failure rate across the datacenter network can be significant enough to inflict suf-

ficient packet loss and affect the SLAs. In practical datacenter operating conditions,

the reported MTBF (Mean Time Between Failures) for network links is on the order of

10,000 hrs [127]. Using this, we can estimate the hourly link failure rate as below,

Failure Rate = 1
MTBF

(1.1)

For a MTBF on the order of 10,000 hrs, the failure rate comes to be ∼10-4 per hour.

Since the number of links in a large datacenter network are on the order of ∼105, a failure

rate of 10-4 per hour means that we can expect 10’s of links to fail every hour. This

example calculation indeed corroborates with real-world data from production datacenter

networks. Gill et al. reported an average of 40.8 links failing each day [73]. At the 95th

percentile, about 136 links are reported to fail daily [73].

Gray link failures. Compared to fail-stop link failures, gray link failures have very

1.1 Challenges in providing tail FCT SLA Guarantees 7

different failure characteristics. Gray link failures typically occur on optical links. In

datacenter networks, switch-to-switch links are typically optical [182, 192] as they can

support high link speeds (10-400 Gbps) over long distances compared to electrical links.

Optical links are susceptible to packet corruption, as the optical receiver sometimes

fails to correctly decode the transmitted bits. Optical decoding errors can occur due

to a variety of reasons such as fiber bending, connector or fiber tip contamination by

airborne dirt particles, decaying laser transmitters, etc. [182, 192]. When an optical

decoder decodes the bits of a packet incorrectly, the Ethernet frame checksum (FCS)

fails and the receiving MAC drops the packet. With tens of thousands of optical links in

a datacenter, packet corruption loss can be significant. A large-scale study by Microsoft

consisting of 350K links across 15 datacenters shows that the number of packet lost due

to corruption can be on par with the number of packets lost due to congestion [192].

Another study by AliBaba showed that about 18% of the packet drops that caused

serious network performance degradation to their cloud customers were caused due to

corruption [189].

Overall, packet loss due to both types of link failures is a norm in datacenter net-

works. It therefore needs to be handled for ensuring reliable delivery of packets such that

end-to-end retransmissions and retransmission timeouts do not occur and thus the tail

FCTs remain bounded. One way to prevent packet loss due to link failures could be to use

highly reliable hardware. However, highly reliable network hardware is prohibitively ex-

pensive, especially for the large scale of the datacenter networks. The challenge therefore

lies in achieving reliable (nearly) no loss packet delivery on top of commodity network-

ing hardware. Other aspects of datacenter computing such as datacenter storage have

long followed the trend of using cheaper commodity hardware (e.g. disks) and masking

the hardware unreliability from applications through intelligent techniques [71]. Similar

masking of unreliability needs to be achieved for datacenter networking hardware.

8 Introduction

Bounding Tail FCTs in datacenter networks

Handling Congestion Events Handling Link Failure Events

Congestion Control/
AQM schemes
[DCTCP, DeTail

NDP, PAIS]

Unpredictable Congestion
[BurstRadar*]

Systematic Congestion

Load Balancing
[Conga, Hula]

Fail-stop Gray

Host-based
Loss Recovery
[TCP, FUSO]

Link-local
Retransmission
[LinkGuardian*]

Re-routing
[CorrOpt,

RAIL]

In-network
Loss Recovery

[SQR*]

* Thesis Contributions

Figure 1.2: Problem space for bounding tail FCTs in datacenter networks

1.2 The In-Network Approach

Figure 1.2 shows the problem space for ensuring bounded tail FCTs in datacenter net-

works. A vast majority of the current solutions to handle congestion events as well as

link failure events take the end-to-end approach i.e. they treat the network as a black

box that simply forwards packets and solutions run mainly on the end host servers.

The end-to-end approach works really well for handling systematic congestion events

as their causes are mainly rooted at the hosts. As a result, systematic congestion is a

well-researched problem with decade-worth of prior work (discussed in §1.1.1). How-

ever, as we show through the following chapters, the end-to-end approach is insufficient

to mitigate the impact of unpredictable congestion events or handle link failure events

in order to ensure bounded tail FCTs.

In this thesis, we take an in-network approach to mitigate unpredictable congestion

events as well as handle link failures. In our in-network approach, the solutions run

entirely within the network while being nearly transparent to the end hosts. The key

enabler for our in-network approach is a new hardware technology called the dataplane

programmable switches [36, 95, 139]. These switches allow us to implement algorithms

within the forwarding chip (dataplane) of network switches. Once implemented, these

algorithms then run at hardware speeds (∼ Tbps). Below we list the key new function-

1.2 The In-Network Approach 9

alities enabled by programmable switches which make our in-network approach feasible:

• Packet-level operation: Even at terabit-level aggregate speeds, programmable

switches allow us to perform operations at a per-packet granularity i.e. they allow

us to implement algorithms at the highest resolution of a single packet.

• Stateful operation: Programmable switches provide state in the dataplane that

can be accessed at hardware speeds (∼Tbps). This allows implementing stateful

algorithms and protocols where the logic spans several packets.

• Packet cloning: These switches allow creating copies of the packets at hardware

speeds. They also provide different on-chip paths that allow us to move these

packet copies and place them in any output (egress) queue. This essentially en-

ables the possibility of performing switch-based packet retransmission at hardware

speeds.

• Per-packet queuing telemetry and precise timestamping: Programmable

switches are also able to track queue size information on a per-packet basis. For

example, for each packet, the hardware can provide information about the queue

size when the packet was enqueued and the queue size when the packet was de-

queued from the queue. Within the dataplane, switches also provide per-packet

timestamping at a nanosecond resolution [106]. The per-packet queuing telemetry

combined with precise timestamping provides high-resolution data to reconstruct

any unpredictable congestion events that last only 100’s of µs.

• On-chip packet generation: Programmable switches provide different ways to

generate new packets at hardware speeds. This makes it possible to implement

protocol messages between different switches at hardware speeds and also allows

to transfer any telemetry information out of the switch dataplane (switching chip).

Armed with these new functionalities enabled by programmable switches, in this the-

10 Introduction

sis we propose three in-network solutions with a common goal of ensuring bounded tail

FCTs in datacenter networks. Specifically, for unpredictable congestion (microbursts),

we propose BurstRadar which provides continuous and efficient in-network monitoring of

microbursts irrespective of the cause. BurstRadar helps the network operators to iden-

tify the cause for every single microburst occurring in the network so that the network

operators can take corrective actions such as tuning application and congestion con-

trol parameters, addressing an offending flow/application, etc. Basically, BurstRadar

provides continuous congestion event monitoring which is an integral part of managing

unpredictable congestion events (see Figure 1.1). For fail-stop link failures, we propose

SQR which performs seamless in-network packet loss recovery such that the end-host ap-

plications can remain completely oblivious to any link failures occurring in the network.

SQR runs locally on a single switch and requires no coordination with other switches

since fail-stop link failures can be detected locally. For handling gray link failures, we

propose LinkGuardian which also performs in-network packet loss recovery. While Link-

Guardian uses similar techniques as SQR for packet cloning and retransmission, the key

difference is that LinkGuardian needs to perform selective retransmission of only the

packets that were lost due to corruption packet loss. To do so, LinkGuardian imple-

ments a fast and efficient link-local packet loss detection and retransmission protocol

that runs between two adjacent switches that share the corrupting link.

1.2.1 Why the In-network approach works?

As discussed in §1.1.1, continuous monitoring of congestion events is required to find

the current causes of unpredictable congestion events so that they could be fixed later.

However, due to the transient nature of the congestion events (lasting 100’s of µs), an

end-to-end approach [14, 135] fails to even detect the congestion events, let alone collect

sufficient telemetry information that enables finding the root cause. The key insight

behind BurstRadar’s in-network approach is to capture the unpredictable congestion

1.2 The In-Network Approach 11

events locally within a switch’s dataplane (where they occur) and then export the per-

packet telemetry information for each congestion event. This is enabled by the per-

packet queuing telemetry, precise timestamping, stateful operation and on-chip packet

generation functionalities of programmable switches.

In case of link failures, the resulting packet loss leads to the increase in the flow

completion times (FCTs). The key reason for this is that, by default, the packet loss

detection as well as recovery is performed in an end-to-end manner. With an end-to-end

approach, the packet loss recovery incurs a delay of at least 1 round-trip time (RTT).

Also, since an end-to-end approach typically uses a sequence number based scheme to

detect packet loss, it fails to quickly detect the loss of the last (tail) packet of a flow

and relies on an expensive retransmission timeout (RTO) which significantly impacts the

FCT. Furthermore, an end-to-end approach cannot distinguish between a corruption and

a link failure packet loss. As a result, in an end-to-end approach, any packet loss gets

treated as a congestion loss leading to reduction in the sending rate of the transport-level

sender and thereby increasing the FCT. The key insight behind the in-network approach

adopted by both SQR and LinkGuardian is to mask the packet loss due to link failure

events from the end-host transport by performing in-network packet loss recovery. By

doing so, we can prevent the increase in FCT due to link failures by avoiding all the

above drawbacks of an end-to-end recovery. By operating the detection scheme locally

at a network link, SQR and LinkGuardian are able to precisely and quickly (at hardware

speeds) detect the packet loss due to link failure events without requiring an expensive

RTO. Also, since the packet loss recovery is performed in-network and at hardware

speeds, the recovery delay is less than 1 RTT. This in-network packet loss detection

and recovery is enabled by precise timestamping, packet cloning, stateful operation and

on-chip packet generation functionalities of programmable switches.

12 Introduction

1.3 Summary of Thesis Contributions

In the following subsections, we provide a brief overview of our contributions.

1.3.1 BurstRadar

As discussed in §1.1.1 unpredictable congestion events (microbursts) can affect FCTs in

datacenter networks by causing increased latency, jitter and packet loss. To address this

problem, we first need to be able to accurately detect the occurrence of these microbursts

and identify the contributing flows. However, it is hard to do so since microbursts occur

unpredictably and last only for 10’s or 100’s of µs. This is further exacerbated by the

fact that, when microbursts occur, the telemetry information needs to be captured at

full link speeds while the link speeds in modern datacenter networks are ever-increasing

(up to 800 Gbps as of today [78]).

Our system, called BurstRadar, is designed to run entirely in the switch dataplane.

Higher link speeds are correspondingly supported by faster switch dataplanes and there-

fore BurstRadar’s design and implementation is agnostic to the link speeds. Further, for

efficiently capturing the unpredictable microbursts, our key insight is that microbursts

are localized to a port’s egress queue. This makes all the information required for de-

tecting and characterizing a microburst available together on a single switch. Unlike

the in-band network telemetry approach [77, 98], by detecting a microburst directly on

the switch where it happens, BurstRadar can avoid the computations and delays arising

from having to correlate monitoring information from different points in the network.

BurstRadar uses a Snapshot algorithm to capture information of the packets involved

in a microburst. It then generates on-demand courier packets for transporting this

information together.

We have implemented BurstRadar on an Intel Tofino [139] switch and evaluated it on

a multi-gigabit hardware testbed using utilization burst distributions from Facebook’s

1.3 Summary of Thesis Contributions 13

production network [188]. Our results show that even with microbursts occurring as

frequently as every 200 µs, BurstRadar processes 10 times less telemetry information

compared to existing solutions [77, 111], while providing all information to fully charac-

terize microbursts and identify the contributing flows. BurstRadar captures telemetry

information for all packets contributing to microbursts, even with bursts occurring si-

multaneously on multiple egress ports, while consuming very few resources in the switch

dataplane.

Through the design and implementation of BurstRadar, we demonstrate that pro-

grammable dataplanes can be used to detect microbursts more efficiently by capturing

the telemetry information of only the packets involved in microbursts.

1.3.2 SQR

As discussed in §1.1.2, fail-stop link failures cause packet loss which can increases the

FCTs. Existing management techniques for fail-stop link failure involve detecting a link

failure and redirecting traffic on an alternative backup path. However, these techniques

cannot keep the tail FCTs low under link failures because they cannot completely elimi-

nate packet loss during the failure detection and route reconfiguration. As a result, loss

recovery is required to be done by end-hosts which can increase the FCTs by several

fold. We observe that to completely mask the effect of packet loss and the resulting

long recovery delay, the network has to be responsible for packet loss recovery, instead

of relying on end-to-end recovery. Our system, called Shared Queue Ring (SQR), is

an on-switch mechanism that completely eliminates packet loss during link failures by

diverting the affected flows seamlessly to alternative paths. In SQR, our key idea is that

by estimating the upper bound on the link failure detection and the network reconfigu-

ration delay, the switch dataplane can cache a copy of the recently sent packets for this

duration. Then, in the event of a link failure, we can avoid packet loss by retransmit-

ting the cached copy of these previously transmitted packets on the alternative backup

14 Introduction

path. We have implemented SQR on an Intel Tofino switch using the P4 programming

language. Our evaluation on a hardware testbed shows that SQR can completely mask

link failures and reduce tail FCT by up to 4 orders of magnitude for latency-sensitive

workloads.

While caching packets on the switch is an obvious idea, it is not straightforward

to achieve and was not feasible until now. The significant reduction in route recovery

times and increase in on-switch packet buffer sizes have made it feasible, while our

design, implementation and evaluation of SQR demonstrates that it is both effective and

practical. Our work suggests that on-switch packet caching would be a useful primitive

for future switch ASICs.

1.3.3 LinkGuardian

While SQR helps eliminate packet loss during fail-stop link failures, it does not help with

gray link failures since the link remains “up” but still drops packets due to corruption.

Packet corruption loss is a serious problem in datacenter networks. A large-scale study

by Microsoft reported that the number of packets lost due to corruption is comparable

to those lost due to congestion [192]. Packet corruption loss is different than congestion

packet loss because it does not go away even when the end hosts reduce their transmission

rates. Unless mitigated, packet corruption will continue to cause degradation to appli-

cation performance and affect a cloud provider’s SLAs (Service Level Agreements) [189]

by impacting both latency-sensitive and throughput-sensitive applications.

Previous attempts to mitigate the impact of packet corruption loss seek to avoid

the faulty links by routing around them, at the cost of reduced link capacities and

disruption to the rest of the network. In this thesis, we investigate the feasibility and

tradeoffs of the classical loss recovery strategy of link-local retransmissions in the context

of datacenter networks. Through the design and implementation of LinkGuardian, we

show that it is feasible to perform ordered link-local recovery of corruption packet loss on

1.3 Summary of Thesis Contributions 15

today’s high-speed datacenter links thereby making the end hosts completely oblivious to

corruption packet loss. LinkGuardian is designed as a dataplane-based protocol between

two neighboring switches that are connected by a link with gray failure. The sending

switch makes a copy of the recently sent packets and buffers them for potential future

retransmission. The two switches run a protocol in the dataplane to detect corruption

packet loss, if any. In case of a loss, the sending switch retransmits the lost packet.

The receiving switch in the meantime buffers the out-of-order packets and transmits

them ahead “in order” once it receives the retransmitted copy of the lost packet. Since

flows in today’s datacenter networks are mostly short and use TCP, we found that even

out-of-order retransmission by LinkGuardian can be effective in mitigating the impact

of corruption packet loss.

LinkGuardian is implemented using dataplane-programmable switches and is amenable

to incremental deployment. For deployment, we propose a combined LinkGuardian +

CorrOpt [192] solution to efficiently manage link corruption in large-scale modern data-

center networks. CorrOpt [192] is the state-of-the-art solution that disables corrupting

links subject to network capacity constraints.

Our evaluation on a hardware testbed shows that: (i) For a 100G link with a loss

rate of 10-3, LinkGuardian can reduce the loss rate by up to 6 orders of magnitude while

incurring only a 9% reduction in the link’s effective link speed; and (ii) LinkGuardian

improves the 99.9th percentile FCT for TCP and RDMA by 18x and 160x respectively by

handling tail packet losses at sub-RTT timescales. Using large-scale simulations, we also

compared the combined LinkGuardian + CorrOpt [192] solution with vanilla CorrOpt.

Our results show that the combined solution reduces the total network-wide packet loss

rate by at least 4 orders of magnitude and also allows network operators to operate at

higher capacity constraints which were not possible before.

Overall, we believe that we have made a strong case that link-local retransmission is

both practical and effective for modern datacenter networks.

16 Introduction

1.4 Thesis Structure

The rest of this thesis is structured as follows. Related work is reviewed in Chapter 2.

We present the background, motivation, design and evaluation of BurstRadar and SQR

in Chapters 3 and 4 respectively. In Chapter 5, we cover LinkGuardian in full details.

Finally, in Chapter 6, we discuss the future directions and conclude this thesis.

Chapter 2
Related Work

As described in Section 1.1, the two main causes for increase in tail FCTs include con-

gestion events and link failure events. In this chapter, we therefore review the related

work in these two broad categories.

2.1 Handling Congestion Events

As shown in Figure 1.2, congestion events that lead to increase in tail FCTs can be of

two types - (i) systematic congestion events that are caused by the design of end-host

congestion control, on-switch AQMs, and/or load-balancing; and (ii) transient congestion

events that are caused by unanticipated complex interactions between the flows in the

network.

There is a large body of work towards addressing high tail FCTs due to systematic

congestion events. This is a well understood area and here we provide a high-level sum-

mary of the most relevant works. DCTCP [8] and HULL [9] propose improvements to

TCP in order to reduce queue occupancy in datacenter networks. D3 [180], D2TCP [173],

and PDQ [87] belong to the category of protocols that take into account end-host spec-

ified deadlines for completion of the flows. PIAS [17], QJUMP [76] and pFabric [10] use

18 Related Work

strict priority queue scheduling in combination with per-flow priority specified by end-

host applications. pFabric also requires an unconventional AQM where a high priority

incoming packet could replace a low priority packet in the switch buffer. pHost [69],

NDP [83], Homa [134] and ExpressPass [43] use receiver or credit-based scheduling and

priorities. HPCC [119], DCQCN [190], XCP [108] and RCP [54] use an explicit conges-

tion feedback. Timely [131] use one-way delay as a congestion signal. Swift [115] handles

congestion both in the network as well as at the end host. Load balancing schemes such

as CONGA [7] and HULA [109] also help avoid systematic congestion and keep the tail

FCTs bounded. AQMs such as Approximate Fair Queuing [161] help to prevent long

flows from increasing the FCTs of short flows. However, scheduling itself does not reduce

the overall occupancy of the shared buffers on the switches. Buffers can still fill and

cause packet loss thereby affecting the FCTs [74].

Almost all of the above proposals operate under certain assumptions about the oper-

ating environment and therefore can handle any systematic congestion events. However,

as described in Section 1.1.1, despite of the significant prior work, microbursts can still

occur when the design assumptions of these schemes do not hold in practice or when

there are complex unanticipated interactions between the flows. Therefore, what is not

addressed well in the literature is the increase in tail FCTs due to non-systematic tran-

sient congestion events i.e. microbursts. As explained in Section 1.1.1, it is not possible

to completely prevent the occurrence of microbursts as they occur due to complex unan-

ticipated interactions of the different flows in the network. What is therefore needed is

a feedback loop as shown in Figure 1.1. Any transient congestion events occurring in

the network not only need to be detected, but the relevant telemetry information also

needs to be collected so as to identify the exact cause of the microburst. This informa-

tion is necessary to take appropriate corrective action and prevent future occurrence of

microbursts due to the same cause in the future. In the following subsection, we cover

in details the existing literature on detecting microbursts and collecting the relevant

2.1 Handling Congestion Events 19

telemetry information.

2.1.1 Monitoring Microbursts

Commercial solutions such as Cisco’s Nexus 5600 and 6000 series switches, as well as

Arista’s 7150S series switches can detect the occurrence of microbursts but provide no

details about the cause [45, 138]. Learning the cause requires traffic mirroring and data

correlation across different monitoring data streams [45]. In contrast, BurstRadar pro-

vides a full snapshot of telemetry information about the packets involved in a microburst.

With this information, we can identify the contributing flow(s) without the significant

costs associated with data correlation and traffic mirroring. Marple [137] is another

network monitoring system that proposes augmenting dataplane programmability with

a custom key-value store hardware primitive. It presents a microburst detection case

study in which microbursts are assumed to occur at regular intervals. The proposed

approach will not work in practice because microbursts do not occur at regular inter-

vals [188]. BurstRadar does not make any such assumption about the arrival pattern of

microbursts. It may be possible to orchestrate BurstRadar’s techniques in the Marple

framework with some modifications. However, unlike BurstRadar, the hardware primi-

tives required by Marple are not available on today’s programmable switching ASICs.

In-band Telemetry (INT). In-band Telemetry (INT) [77, 111] is a network debug-

ging system that is built on top of programmable dataplanes. It is the state-of-the-art

solution that can be deployed to monitor microbursts or non-systematic transient con-

gestion events. Later in Chapter 3, we compare our solution BurstRadar with INT.

Figure 2.1, shows an example operation of INT. Consider flow 1 in Figure 2.1 that tra-

verses switches 1, 3, 4, and 5. If INT is enabled for flow 1, then when a packet from

flow 1 (P1 in Figure 2.1) enters the network, the first switch called the “INT Source”

(switch 1) adds an INT header into the packet (see green header 1 attached to P1 in

Figure 2.1). This telemetry header consists of information such as the timestamps from

20 Related Work

sw1

sw2

sw3 sw4

sw5

sw6

P1

P2

P11

P22

P113 P1134

P223 P2234
P2

26 34

1345

P1

{ {
Telemetry

Report

{ {Telemetry
Report

Flow 1

Flow 2

Analytics
Server1

Analytics
Server2

INT Source

Microburst

INT Sink

Figure 2.1: Example operation of In-band Network Telemetry (INT) to monitor mi-
crobursts

switch 1 corresponding to when P1 arrived and left the switch, the enqueue/dequeue

queue depth (congestion) experienced by P1, etc. All the subsequent switches add simi-

lar information to P1. Finally, when P1 is processed by the last switch called the “INT

Sink”, all the INT telemetry headers are removed from the packet and sent to an ana-

lytics server for processing. The packet then exits the network in the same form as it

entered the network without any INT headers. When deployed across a large datacenter

network, the INT Sink switches export telemetry data to multiple different analytics

servers for load balancing. Now consider a scenario, where a burst flow (flow 2) enters

the network and causes a transient congestion event (microburst) at switch 3. Now, to

use INT to detect that a microburst occurred at switch 3 and it occurred due to the

bursty flow 2, we would also need INT to be enabled on flow 2. Thereafter, we would

need to correlate the INT telemetry information from both the flows in the following

manner. When packets from flow 1 show that they experienced high queuing delay on

switch 3, we would extract the switch 3 timestamps from these specific packets. Then

we would check the INT information inside packets from other flows (in this case flow

2) to see if any packets from other flows were at switch 3 around the same time as the

packets from flow 1. In this case, we would find that the packets from flow 2 (processed

2.1 Handling Congestion Events 21

at analytics server 2) were at switch 3 and were the cause for the microburst.

While Figure 2.1 showed a simple example, in practice, however, due to the complex

interactions of datacenter network traffic, microbursts are unpredictable [188] and can

occur at any time involving any flows. What this means is that, in order to detect

and characterize microbursts reliably, INT would need to be enabled for all flows at all

times. The INT analytics servers would then need to process telemetry information for

every single packet in the network, even though only a small number of these packets are

involved in the microbursts. Further, as we saw in the example above, expensive data

correlation across analytics servers would then be required to reconstruct a microburst

event. Furthermore, enabling INT on all flows would consume 10% additional band-

width1 in the entire network due to the extra INT headers. BurstRadar, on the other

hand, captures telemetry information only for the packets involved in microbursts, does

not require expensive data correlation and is non-intrusive to production traffic since it

operates out-of-band.

Chen et al. recently proposed Snappy, a technique to estimate the contents of a mi-

croburst queue and identify the culprit (heavy) flows in the dataplane [39]. Snappy’s

detection of culprit flows is however probabilistic in nature and the probability of iden-

tifying all the culprit flows (Recall) increases with the number of switch pipeline stages

used by Snappy. Snappy is expected to require more than 128 stages for achieving a

decent “recall” in practice2. Today’s programmable switching ASICs do not currently

support such a large number of pipeline stages and we believe that they are unlikely to be

available in the near future due to cost concerns. Snappy further requires division and

rounding operations which are not currently supported on high-speed programmable

switching ASICs. BurstRadar, on the other hand, requires only a modest amount of

resources (§3.3.3) and can thus be implemented on programmable switches available
1For a 5-hop diameter network, INT requires extra 54 bytes per packet [98] which is 10% extra for a

median packet size of 500 bytes [23].
2Real-world microbursts queue lengths are less than 250 KB at the 90th percentile [188]. This requires

Snappy to use smaller “window” sizes to better approximate the queue boundaries.

22 Related Work

today. The microburst information exported by BurstRadar goes beyond accurate cul-

prit detection and provides a full characterization of microbursts, which is important to

network operators for network planning. While Snappy’s approach of detecting culprit

flows in the dataplane is more suited for automatic microburst mitigation, further work

is required to make it practical.

NetSight [82] employs mirroring or packet cloning for exporting telemetry informa-

tion for every single packet traversing a switch. Since packets involved in microbursts

form a very small fraction of the overall packets, such an approach is grossly inefficient

and infeasible for large datacenter networks. Everflow [191] uses “match and mirror”

to selectively trace specific packets across a large datacenter network. However, since

microbursts are unpredictable [188], identifying the specific packets involved in a mi-

croburst and exporting the corresponding queuing information requires going beyond

the stateless “match and mirror” operation.

There have been systems proposed for monitoring a different class of microbursts,

called link utilization microbursts [171, 188]. Link utilization microbursts are inter-

vals where the utilization of a link exceeds a certain threshold, and unlike queuing

microbursts, might not result in queuing. These systems [171, 188] can only detect link

utilization microbursts at the time-scale of tens of microseconds. BurstRadar instead

monitors queuing microbursts at a sub-microsecond resolution. It remains a future work

to extend BurstRadar to monitor link utilization microbursts.

2.2 Handling Link Failure Events

As shown in Figure 1.2, other than the congestion events, a major cause for the increase

in tail FCTs are the link failure events. Link failure events are broadly of two types –

fail-stop and gray – and in this section we review the literature for both of them.

2.2 Handling Link Failure Events 23

2.2.1 Handling Fail-stop Link Failures

The related work for handling fail-stop link failures can be further categorized into two

categories – (i) Route Recovery: this includes the works that find an alternative

route for traffic that was previously carried by the failed link, and (ii) Packet Loss

Recovery: which includes the works related to recovering the packets that were lost

from the time the original link failed and the new alternative route was established.

Route Recovery. Among existing route recovery schemes, many attempt to achieve

fast re-routing for multi-path datacenter topologies. Failure carrying packets [116] are

proposed to avoid route convergence delay by carrying failed link(s) information inside

data packets to notify other nodes. Fast Reroute (FRR) [147] used in MPLS networks can

provide recovery in less than 50 ms during a link/node failure. Packet Re-cycling [123]

takes advantage of cycle in the network topology where routers implement a cyclic rout-

ing table. SPIDER [35] and Blink [86] maintain a pre-computed backup next hop in

the switch. Sedar et al. [158] implement the fast reroute primitive based on known port

status in programmable data planes and in Data-Driven Connectivity [121] dataplane

packets are used to ensure routing connectivity. Flowlet switching [104] based load

balancing schemes such as CONGA [7] and HULA [109] are an implicit form of fast re-

routing schemes since they avoid a failed path for routing subsequent flowlets. Another

group of route recovery schemes consist of multi-path network architectures that allow

fault-tolerance [3, 5, 75, 79, 81, 165]. Notably, F10 [122] designs an AB fat-tree and a

centralized rerouting protocol to support downlink recovery.

ShareBackup: ShareBackup [181] is the state-of-the-art solution for route recovery.

Later in Chapter 4, we evaluate our proposed solution SQR in combination with Share-

Backup. The basic idea of ShareBackup is to have a shared pool of backup switches

spread across the entire datacenter network. These backup switches essentially form a

backup network that provides on-demand alternative paths when existing paths fail due

24 Related Work

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35

C
D

F

TCP CWND Size (MSS segments)

Figure 2.2: cwnd size distribution for short flows

to fail-stop link failures. ShareBackup uses optical circuit switches which can dynami-

cally form new backup links on-demand to provide the required backup paths. Whenever

a link faces a fail-stop link failure, ShareBackup reconfigures its pool of optical circuit

switches such that a new alternative link is formed between the two switches who lost the

link between them. ShareBackup takes only about 730 µs to reconfigure a backup link

making it the state-of-the-art for route recovery. The main drawback of ShareBackup is

that the delay of 730 µs is still not short enough to prevent increase in FCTs for short

flows in today’s high-speed datacenter networks. Figure 2.2 shows the distribution of

the TCP congestion window (cwnd) that we observed while running a latency-sensitive

workload [8] on a network with 10G link speeds. We see that the maximum observed

cwnd size is 32 MSS segments which translates to 46.34 KB. On the other hand, a failure

time of 730 µs on a 10G link amounts to 970 KB worth of data transmission. What

this means is that, during the time that ShareBackup performs the route recovery, it is

possible to lose an entire cwnd worth of packets which would cause a TCP retransmission

timeout (RTO) and thereby increase the FCT significantly. SQR is complementary to

existing route recovery schemes as it helps them to avoid packet loss during their route

recovery and link failure detection times.

Packet Loss Recovery. Traditionally, packet loss recovery is left to end-point

transport. However, for short latency-sensitive flows, end-host recovery incurs FCT

2.2 Handling Link Failure Events 25

Do NOT use the Link Use the link

Disable the link
(CorrOpt)

Avoid the link (RAIL)

End-to-End Link-local

Redundancy
(RAIL,

CloudBurst)

ReTx
(TCP, IRN,
FUSO)

Redundancy
(Ethernet FEC,

Wharf)

ReTx
(LinkGuardian)

Figure 2.3: Design space for mitigating corruption packet loss due to gray link failures
in datacenter networks.

penalty due to packet loss and timeout before recovering the lost packets (c.f. §4.2).

Alternatively, end-to-end redundancy approaches can be used [37, 176], where the sender

sends duplicate un-ACKed packets on separate paths. However, duplicating packets on

the entire path increases the required network bandwidth. Since datacenter networks

are often oversubscribed [164], this approach may increase network congestion. Instead

of taking up network bandwidth, SQR opportunistically utilizes free packet buffer on the

switch to store the duplicate packets. In addition, the end-to-end redundancy methods

require changes to the end-host TCP stack. To the best of our knowledge, SQR is the

first attempt at in-network packet loss recovery and requires no changes to the end hosts.

Overall, all existing route recovery and packet loss recovery schemes cannot seam-

lessly divert traffic from a failed path to an alternative path. The main reason is that

they do not take into account the inevitable delay and the corresponding packet loss

arising from link failure detection and route reconfiguration. Furthermore, since major-

ity of the flows in datacenter networks are small [23], competing approaches of reducing

route failure time or flowlet-level switching to alternative paths are not able to mitigate

the impact of link failures on short flows. This is precisely the gap that SQR addresses.

2.2.2 Handling Gray Link Failures

In this section, we review the literature related to handling gray link failures. In Fig-

ure 2.3, we lay out the design space for mitigating corruption packet loss due to gray link

26 Related Work

failures. Below we elaborate on each of the different approaches shown in Figure 2.3.

Disabling the faulty links. The most straightforward and common strategy to

deal with corrupting links is not to use them [182, 192]. While this eliminates corruption

packet loss, it also reduces network capacity. A recent study of Microsoft datacenters by

Zhuo et al. showed that under realistic capacity constraints, some 15% of the corrupting

links cannot be disabled [192]. So they proposed to find a subset of corrupting links to

be disabled such that the impact of the remaining corrupting links can be minimized.

The strategy of disabling corrupting links has two limitations: first, since not all cor-

rupting links can be disabled, the remaining corrupting links would continue to cause

packet drops thereby affecting performance SLOs. Second, disabling a link causes dis-

ruption to the rest of the network through packet re-ordering and overall lower network

performance [182, 192] during the time it takes for routing and load-balancing proto-

cols to move traffic away from the disabled link and stabilize the rest of the network.

CorrOpt [192] is the state-of-the-art solution that employs the strategy of disabling the

faulty links. Later in Chapter 5, we propose and evaluate a deployment strategy of our

solution LinkGuardian together with CorrOpt. Therefore, we describe CorrOpt in more

details below.

CorrOpt. The basic idea of CorrOpt is to disable any gray failure (corrupting) links

subject to the capacity constraints of the network. The capacity constraint is specified as

the minimum number of valley free paths from a top-of-rack (ToR) switch to the highest

level (spine) of the network [192]. For example, in Figure 2.4, we show one “pod”3 of

Facebook’s state-of-the-art datacenter network [12]. In Figure 2.4, we can see that each

ToR switch has about 192 [(4 fabric switches) × (48 uplinks)] paths to the spine layer.

A capacity constraint of 75% would then mean that every ToR across all pods in the

network must have at least 144 paths to the spine layer at all times. Now suppose one of

the uplinks to the spine layer for fabric switch 1 (link A in Figure 2.4) starts corrupting
3A pod is a unit or building block of modern datacenter networks.

2.2 Handling Link Failure Events 27

49 51 52

48 links 48 links 48 links 48 links

4 fabric
switches50

1 2 3 4 5 6 7 8 9 10 ... 48

Link B

Link A

Spine Layer

48 top-of-rack (TOR) switches

Figure 2.4: A single pod from Facebook’s state-of-the-art datacenter network. Image
adapted from: Alexey Andreyev, Facebook [12].

packets. In this case, CorrOpt will run its fast checker algorithm which checks whether

any ToR switch’s capacity constraint would be violated if link A is disabled. In this case,

all ToR switches in the pod will lose only 1 path and will still have 191 paths remaining

to the spine layer. Therefore, CorrOpt will disable this link and schedule it for repair. In

the meantime that this link is repaired, suppose the link between ToR switch 1 and fabric

switch 2 (link B) starts corrupting packets. Again, CorrOpt will run its fast checker to

see if capacity constraints are violated for any ToR switch. In this case, disabling link

B will make ToR switch 1 lose another 48 paths to the spine layer as it would be totally

disconnected from fabric switch 2. ToR switch 1 would then remain with only 143 [191

- 48] paths to the spine which violates the capacity constraint. Therefore, CorrOpt will

not disable link B due to capacity constraint violation and the link will continue to

corrupt packets. After a few days, when link A is repaired and enabled, CorrOpt will

run its optimizer algorithm which checks if any of the remaining corrupting links can

be disabled. The goal of the optimizer algorithm is to find a subset of the remaining

corrupting links that can now be disabled such it leads to the maximum reduction in

the network-wide corruption packet loss. In this example, the optimizer algorithm will

28 Related Work

find that since link A is enabled, link B can be now disabled after which ToR switch

1 will have 144 paths to the spine layer and thus it will not be violating the capacity

constraint. Overall, we see that while CorrOpt is effective in disabling corrupting links,

due to the topology structure and the spatial proximity of the corrupting link, there are

often times when CorrOpt fails to disable the corrupting links. During such times, the

corruption packet loss continues to affect application performance thereby affecting the

tail FCTs.

Avoiding the faulty links. Another approach is to avoid corrupting links through

source routing or by using virtual network topologies. RAIL allows latency-sensitive

applications to avoid lossy links by routing using virtual network topologies [193]. How-

ever, in addition to reducing capacity indirectly, it is cumbersome to maintain virtual

network topologies as each new corrupting link could require the forwarding entries on

several hundred switches across the network to be updated. This approach also requires

end-host modifications as applications are required to bind to the appropriate virtual

interface.

End-to-end recovery (redundancy). When using a corrupting link is inevitable

due to a lack of alternative paths or capacity constraints, end-to-end loss recovery be-

comes necessary. This can be achieved through proactive redundancy via using end-to-

end forward error correction (FEC) [186, 193] or packet duplication [176]. However, this

approach adds redundant bytes for all the packets across the entire path and risks wors-

ening congestion in the network. FEC encoding and decoding also add latency. Further,

the required decoding at the receiving end makes it off-limits for supporting one-sided

RDMA operations where no CPU is involved on one end.

End-to-end recovery (retransmission). Another option is to simply ignore cor-

rupting links and leave the recovery to the transport endpoints. However, for short

latency-sensitive flows on high speed networks, the recovery latency of the end-host

transport stack (e.g. TCP) can be much larger than their no-loss flow completion times.

2.2 Handling Link Failure Events 29

It is possible that latency-sensitive flows can recover faster by using NIC-offloaded [13,

132, 163] and/or multipath [38] transport stacks. Further, IRN proposes to use an adap-

tive RTO to reduce the recovery delay in case of tail packet loss [132]. However, the fun-

damental limitation of any end-to-end recovery is that it cannot completely eliminate the

use of retransmission timeouts and therefore the recovery delay remains lower-bounded

by 1 RTT.

Link-local recovery (redundancy). While proactive link-local redundancy ap-

proaches like forward error correction (FEC) are similar in spirit to LinkGuardian,

they have several limitations. The Ethernet standards for 25G/100G [90, 91] and

50G/200G/400G [92, 93] specify optional and compulsory FEC at the PHY layer re-

spectively. However, the redundancy parameters are fixed in the standards and cannot

be adjusted according to the current loss rate. Wharf [72] also uses link-local FEC but

at the level of an Ethernet frame (L2). The main drawback of Wharf is that the re-

dundancy is added to all the packets even if the corruption loss rates are very small

(see Figure 5.2). When the effective link capacity of the corrupting link is reduced due

to FEC overhead, Wharf performs meter-based packet dropping to signal reduced link

speed. This will not work well with modern delay-based transport such as TIMELY [131]

or Swift [115] and certainly not with loss-sensitive RDMA. Wharf requires FPGA sup-

port on switches, and it is unclear if the expensive frame-level FEC encoding/decoding

would scale to link speeds of 100G or more.

Link-local recovery (retransmission). Link-level retransmissions is an old idea

for wireless networks [1, 2, 19, 88, 89, 148]. SQR [152] is an algorithm that implements

link-local retransmission in the datacenter network context, but it is designed to recover

packet loss during fail-stop link failures and does not work for corrupting links. Link-

Guardian represents a different and unexplored point in the solution design space. Our

prior workshop paper [99] investigated the potential of this general idea by implementing

a naive out-of-order retransmission mechanism for 10G links. We found that out-of-order

30 Related Work

retransmission can completely mask corruption packet loss only on a 10G link. Because

TCP has a “reordering tolerance” of 3 packets [11, 24]), if the in-network retransmission

can be completed within 3 packet transmissions, then cwnd reduction and end-to-end

recovery can be avoided. Unfortunately, for higher link speeds such as 100G, the retrans-

mission delay is larger than 2 µs (see Figure 5.10b) while 3 MTU-sized TCP packets can

be transmitted faster, i.e., within ∼370 ns. This means that to fully mask the packet loss

and prevent the performance penalty, we need to preserve packet ordering. Furthermore,

our prior work was a work-in-progress and it did not describe a complete solution that:

(i) completely masks the corruption packet loss with in-order retransmission (and is

hence amenable to RDMA); (ii) handles tail packet loss; (iii) handles consecutive packet

loss; (iv) works at high link speeds; and (v) can be deployed effectively on a large-scale

network. Therefore, to the best of our knowledge, LinkGuardian is the first complete

solution for mitigating corruption packet loss in datacenter networks using link-local

retransmission.

Chapter 3
BurstRadar: Practical Real-time

Microburst Monitoring for Datacenter

Networks

As described in Section 1.1, congestion events are one of the two main causes for increase

in tail FCTs. While significant work has been done to address systematic congestion

events, microbursts – which are transient congestion events – can still occur due to lack

of tuning and/or complex unanticipated interactions between the flows. Therefore, as

argued in section 1.1.1, what is required but is missing from the prior work is a way to

continuously and efficiently monitor any microbursts happening in the network.

We address this gap in the literature through the design and implementation of

BurstRadar. In this chapter, we first revisit the motivation for monitoring microbursts

in the general context of datacenter networking (Section 3.1) before diving into the

details of the system design (Section 3.2) and then presenting the evaluation results

(Section 3.3). Finally, we conclude the chapter (Section 3.4).

32 BurstRadar

3.1 Introduction

Over the last decade, the performance of datacenter networks has improved signifi-

cantly [164]. However, service-level guarantees in terms of flow completion times (FCTs)

still continues to be a challenging problem as datacenter bandwidths increase and appli-

cations become more sophisticated [172]. To achieve more 9’s in service-level guarantees,

we need to ensure that the tail FCTs remain small and bounded even under unpredictable

congestion events. As discussed in §1.1.1, the key to mitigate unpredictable congestion

events is to first achieve greater visibility into the network. Modern datacenter net-

works operate at high-speeds (>10 Gbps) and have ultra-low end-to-end latency (∼10’s

of µs) [60]. As a result, even small amounts of unpredictable queuing, called microbursts,

that occur for short periods of time can have a significant impact on application perfor-

mance and thereby revenue [8].

Microbursts are events of intermittent congestion that last for 10’s or 100’s of µs.

They increase latency and cause network jitter and packet loss in datacenter networks [160].

Common causes include TCP Incast scenarios [8], bursty UDP traffic from an offending

flow, as well as TCP segment offloading or application-level batching [107]. The perfor-

mance degradation arising from microbursts is becoming more common today because

link speeds are moving beyond 10 Gbps while switch buffers remain shallow. Tradi-

tionally, the impact of microbursts has been greatest for high frequency trading (HFT)

applications with reported profit differentials of $100 million per year due to latency

advantage of just 1 ms [125]. However, today with low end-to-end latency in datacen-

ters and high SLA requirements by applications, the impact of microbursts is no longer

limited to such niche applications. Popular webservices like LinkedIn are reported to

have experienced high application latency due to microbursts [103]. Consider an ex-

ample scenario similar to one reported at LinkedIn [103], where the roll out of a new

application service starts to cause microbursts. To address this problem, we first need

3.1 Introduction 33

to be able to accurately detect the occurrence of these microbursts and identify the cul-

prit service/application who added a large number of packets in quick succession to the

microburst’s queue build up. Once the culprit service is identified, the burstiness of the

flows from that service could be fixed by introducing packet pacing or by other means.

Notice that once the cause is determined, in most cases, the fix for microbursts is usually

not very difficult. However, the key challenge lies in detecting the occurrence of these

microbursts and identifying the culprit flows. Therefore, in this thesis, we focus on the

detection of microbursts and collection of the required telemetry information that would

allow finding the root cause(s).

The extremely low timescales make it impossible for traditional sampling-based tech-

niques such as Netflow [47] and sFlow [150] to even detect the occurrence of microbursts.

Some existing commercial solutions [45, 102, 138] are able to detect microbursts, but pro-

vide no information about the cause. Recent advances in programmable dataplanes [27]

and dataplane telemetry have led to proposals for In-Band Telemetry (INT) [77, 111]

that embed telemetry information into each packet and enable debugging for several net-

work issues including microbursts. However, since microbursts are unpredictable [188],

it is wasteful to use INT to monitor them as it would require the telemetry information

for every single packet in the network to be captured and processed, while only a small

number of packets contribute to microbursts. Basat et al. [22] show that INT’s approach

of embedding telemetry information into the packets can lead to 25% increase in average

FCTs since the increase in packet size worsens congestion queue build-ups.

In this thesis, we demonstrate that programmable dataplanes can be used to detect

microbursts more efficiently by capturing the telemetry information of only the packets

involved in microbursts. Our system, called BurstRadar, builds on the out-of-band

approach for exporting telemetry information [82]. Our key insight is that microbursts

are localized to a port’s egress queue. This makes all the information required for

detecting and characterizing a microburst available together on a single switch. Unlike

34 BurstRadar

an INT-based approach [77], by detecting a microburst directly on the switch where it

happens, we can avoid the computations and delays arising from having to correlate

monitoring information from different points in the network. BurstRadar’s key idea is

to take a “snapshot” of all the packets in a queue at every time instant when the queue

grows larger than an operator-specified threshold and export this snapshot information

out of the switch dataplane for root cause analysis. The “snapshot” contains the header

information of all the packets at that instant in the queue, their arrival and departure

times from the queue, as well as the queue size when the packets were enqueued or

dequeued from the queue. BurstRadar uses a Snapshot algorithm (§3.2.1) that runs

on a per-packet basis in the egress pipeline of the switch dataplane to capture such

queue snapshots i.e. precisely identify the packets belonging to the queue snapshots.

It then uses egress packet cloning (§3.2.2) to generate on-demand courier packets for

transporting this information together.

While our approach is relatively straightforward given existing programmable dat-

aplane architectures, we made three observations from our design and implementation.

First, we need a strategy to temporarily store telemetry information before it can be

transferred to the courier packets. Second, there is a sizable delay in the generation of

courier packets and it depends on packet size, among other factors. Third, it is possible

that if there are multiple simultaneous microbursts on different egress ports, telemetry

information for some packets involved might be lost. BurstRadar provisions the temporal

storage by implementing a ring buffer using the transactional stateful memory available

in the dataplane (§3.2.3). We then handle the issues of courier packet delays and mul-

tiple simultaneous microbursts by sizing the ring buffer appropriately (§3.2.3). Overall,

the complete BurstRadar solution works as follows: The Snapshot algorithm first iden-

tifies the packets belonging to queue snapshots and for each such packet, it writes the

telemetry information to the ring buffer while also signaling the courier packet generator

to generate a courier packet. After a small delay, when the courier packet is generated,

3.2 System Design 35

the courier packet reads the telemetry information from the ring buffer and transports

it to a cluster of monitoring servers for root cause analysis.

We have implemented BurstRadar on a Barefoot Tofino [139] switch and evaluated

it on a multi-gigabit hardware testbed using utilization burst distributions from Face-

book’s production network [188]. Our results show that even with microbursts occurring

as frequently as every 200 µs, BurstRadar processes 10 times less telemetry information

compared to INT [77, 111], while providing all information to fully characterize mi-

crobursts and identify contributing flows. BurstRadar captures telemetry information

for all packets contributing to microbursts, even with bursts occurring simultaneously on

multiple egress ports. Further, it achieves real-time detection of microbursts at multi-

gigabit link speeds.

3.2 System Design

Our key idea is to first detect a microburst in the dataplane and then capture a snapshot

of telemetry information of all the involved packets. This information allows queue

composition analysis to identify the culprit flow(s), and burst profiling to know burst

characteristics such as duration, queue build-up/drain rates, etc. Detecting a microburst

is relatively easy with queuing telemetry information provided by modern programmable

switching ASICs [139]. However, taking a snapshot of all the packets involved in the

microburst and further exporting this information in an out-of-band manner is non-

trivial for three reasons. First, the switching ASIC’s “Buffer and Queuing Engine” (BQE)

does not provide any support to peek into the contents of any queue, and so the snapshot

needs to be captured from outside the BQE. Second, any logic in the programmable

pipelines outside the BQE can only execute on a per-packet basis. Third, exporting

the snapshot information requires on-demand generation of new courier packets in the

dataplane and transferring of snapshot information to these courier packets. These

36 BurstRadar

Ingress
Processing

Egress
Deparser

Egress
Pipeline

Egress
Parser

Buffer &
Queuing
Engine

Egress Port Queues

clone_e2e

Figure 3.1: General architecture of a programmable switching ASIC [49]

challenges exist for today’s pipelined-architecture switches which are commonly used in

datacenter networks for their low-latency performance [27, 117, 139].

Figure 3.1 shows the general architecture of a programmable switching ASIC. BurstRadar

runs in the egress pipeline of each switch in the network. It consists of three functional

components: (i) Snapshot Algorithm, (ii) Courier Packet Generation, and (iii) Ring

Buffer. The Snapshot algorithm first determines the packets that are involved in a

queuing microburst and marks them. The marking is done via a metadata header and

does not modify the original packet. For each marked packet, a courier packet is gen-

erated to transport the marked packet’s telemetry information via the switch’s mirror

port. The ring buffer provides temporary storage to facilitate the transfer of telemetry

information from the marked packets to the courier packets. The telemetry information

for each marked packet consists of the packet 5-tuple, the ingress and egress timestamps,

and the queue depths at the time of enqueue and dequeue (enqQdepth and deqQdepth).

Courier packets are processed at the monitoring servers connected to the mirror port

infrastructure. In the following subsections, we describe these three components in more

detail.

3.2.1 Snapshot Algorithm

While BurstRadar can monitor all queuing microburst events, small queuing events

that cause negligible increase in application latency are generally not of interest to

the operator. Therefore, BurstRadar allows the operator to specify a latency-increase

3.2 System Design 37

1

t = 0

234

t = 1

3456

t = 2

456

t = 3

56

t = 4

67

t = 5

Queue Snapshot

Figure 3.2: Evolution of an example queuing microburst at different instants in time

threshold (specified as a percentage). For example, if the network’s no-queuing RTT is

50 µs, then the operator may specify a threshold of 30% which translates to a minimum

latency increase of 15 µs. BurstRadar would then ignore any microbursts that incur

less than 15 µs of delay. The threshold is set on a per-switch basis and the exact value

depends on the maximum delay that can be tolerated by the deployed applications. For

latency-sensitive applications like web services, the threshold could be set to a small

fraction of the RTT. On the other hand, it could be a few multiples of the RTT for

throughput-intensive applications like Hadoop.

We define a queue snapshot to be the set of packets present in the queue when the

queue-induced delay is above the operator-specified threshold. Figure 3.2 shows the

evolution of a toy queuing microburst at different instants in time. At time instant

t=1, the queue length exceeds the threshold (dotted line). Thus the snapshot of the

queue at this instant consists of packets {2,3,4}. Similarly at t=2, the queue snapshot

consists of packets {3,4,5,6}. At t=3, the queue starts to drain, but we still have a queue

snapshot consisting of packets {4,5,6}. At t=4 and beyond, the queue length falls below

the threshold and we stop taking snapshots. In other words, a single queuing microburst

event consists of multiple overlapping queue snapshots. Note that at t=5, an additional

packet #7 enters the queue but is not a part of any of the queue snapshots.

Since egress port queues are a part of the BQE (refer Figure 3.1), it would be easy to

capture queue snapshots inside the BQE. However, the BQE in today’s programmable

38 BurstRadar

Algorithm 1: Queue Snapshot Algorithm
Input: threshold
Initialization: bytesRemaining = 0;

1 foreach pkt in egressPipeline do
2 if deqQdepth > threshold then
3 bytesRemaining = deqQdepth − size(pkt);
4 mark(pkt);
5 else
6 if bytesRemaining > 0 then
7 bytesRemaining = bytesRemaining − size(pkt);
8 mark(pkt);

end

switching ASICs doesn’t provide any such functionality, but provides the queuing teleme-

try information (enqQdepth and deqQdepth) for each packet leaving the BQE. The

enqQdepth refers to the queue size at the time instant when the packet is enqueued,

and similarly the deqQdepth refers to the queue size when the packet is dequeued. Our

Snapshot algorithm uses this telemetry information and runs outside the BQE in the

egress pipeline.

Since the egress pipeline follows a per-packet execution model, the Snapshot algo-

rithm (Algorithm 1) needs to decide (mark) whether a packet entering the egress pipeline

belongs to any queue snapshot or not. For the example microburst in Figure 3.2, we

need to mark the packets #2 to #6, but not #7. To decide if a packet should be marked,

we consider the queue length when a packet is dequeued (deqQdepth). There are two

possible cases: (i) The deqQdepth is greater than the threshold, or (ii) The deqQdepth

is less than or equal to the threshold. In the former, it is clear that the packet belongs to

at least one of the queue snapshots. For example in Figure 3.2, packet #2’s deqQdepth

is greater than the threshold and thus packet #2 would be marked at t=1. Similarly,

packets #3 and #4 would be marked at t=3 and t=4 respectively. At each of these

time instants, the Snapshot algorithm also maintains and updates the bytesRemaining

in the queue (line 3). For example, at t=3, the bytesRemaining would be set to the

3.2 System Design 39

total bytes of packets #5 and #6. In the latter case when the reported deqQdepth is less

than or equal to the threshold, only the packets equivalent of bytesRemaining would

be marked (lines 6-8). In the example, packets #5 and #6 would be marked due to

bytesRemaining set by packet #4; but packet #7 would not be marked. Essentially,

when a queue drains below the threshold, bytesRemaining helps to track and mark the

packets (#5 and #6) that were part of the last queue snapshot (snapshot at t=3).

The telemetry information for these marked packets is then stored in a ring buffer

(§3.2.3) and the courier packet generation logic (§3.2.2) is also signaled to generate a

courier packet to transport the telemetry information to a cluster of monitoring servers.

3.2.2 Courier Packet Generation

BurstRadar generates a courier packet for each marked packet on demand. To do this,

BurstRadar uses the clone egress to egress or clone e2e primitive provided by pro-

grammable switching ASICs [49]. The clone e2e primitive makes a copy of the exiting

regular packet and places it in the egress queue of the mirror port (see Figure 3.1). The

courier packet is also appropriately truncated to remove the original payload.

3.2.3 Ring Buffer

A ring buffer is designed using the transactional stateful memory available in the egress

pipeline and exposed by the P4 programming language [26] as register arrays. The ring

buffer acts as temporary storage for the telemetry information of marked packets until it

can be copied into the courier packets. We use two circular pointers – write pointer and

read pointer – for pointing to the next index of the register arrays to write or read. The

Snapshot algorithm uses the write pointer to write to the ring buffer while the courier

packets uses the read pointer to read from the ring buffer. Since the Snapshot algorithm

first writes to the ring buffer before signaling the generation of the corresponding courier

packet, the read pointer always trails the write pointer.

40 BurstRadar

Ring Buffer Sizing. We found that the first read from the ring buffer by a courier

packet happens only after a cloning delay. During a microburst, the interval between

the first and second writes to the ring buffer is mainly determined by the serialization

delay of the first packet. If the serialization delay of the first packet is smaller than the

cloning delay, the second packet in the microburst will write to the ring buffer before the

first courier packet performs the first read. Therefore, the ring buffer needs to be large

enough to store the information for the marked packets passing through the pipeline

before the first read by the courier packets.

Figure 3.3 compares the cloning delay to the serialization delay (at 10 Gbps link

speed) for packets of different sizes. For 64 byte packets, the cloning delay (270 ns) is

more than five times the serialization delay (51.20 ns). This means that in the worst case

of having all 64 byte packets in a microburst, more than five writes would be made to

the ring buffer before the first read happens. For our ASIC implementation, we found

that factors1 other than the packet size also affect the cloning delay. Accordingly, we

found (by measurement) the required minimum ring buffer sizes for 10 Gbps and 25 Gbps

link speeds to be 26 entries and 32 entries, respectively. Since the size of each entry is

29 bytes, these requirements translate to 754 bytes and 928 bytes, which are very small

given the SRAM memory sizes (up to 100 MB) in today’s ASICs [129].

Concurrent Microbursts. Since the egress pipeline is shared among the ports, it

serves the egress port queues in a round-robin manner. Therefore, if multiple egress ports

simultaneously experience microbursts, in one scheduling round of the egress pipeline,

there would be multiple writes to the ring buffer while only a single read due to a single

mirror port. This seems to suggest that a very large ring buffer might be required to

handle multiple concurrent microbursts. However, as we show in §3.3.2, due to sta-

tistical multiplexing, a ring buffer with 1k entries is sufficient in practice to handle 10

simultaneous microbursts without any overwrites.
1Investigation of all factors will be addressed in a separate measurement study.

3.2 System Design 41

 10

 100

 1000

 10000

 0 200 400 600 800 1000 1200 1400 1600

T
im

e
 (

n
s
)

Packet Size (bytes)

Cloning Delay
Serialization Delay (10 Gbps)

Figure 3.3: Cloning and serialization delay for packets of different sizes

3.2.4 Implementation

BurstRadar can be implemented with small modifications to fixed function switching

ASICs or programmed on modern programmable switching ASICs [36, 95, 139]. We

implemented BurstRadar on a Barefoot Tofino switch [139] in about 550 lines of P4 [26]

code. The operator-specified latency-increase threshold is stored in a register in the

dataplane and can be dynamically configured by the control plane. The Snapshot al-

gorithm and the ring buffer are implemented using a sequence of exact match-action

tables. Arithmetic operations are facilitated by stateful ALUs.

Switching ASICs (fixed or programmable) provision memory for buffered packets

using fixed size memory buckets or segments [138]. Therefore, the reported deqQdepth is

expressed in terms of number of segments. Snapshot algorithm converts the deqQdepth

from segments to bytes to compute bytesRemaining (line 3 in Algorithm 1). This

conversion results in excess bytesRemaining compared to the actual remaining bytes,

causing BurstRadar to mark extra packets towards the tail-end (lines 6-8 in Algorithm 1)

of a microburst. For example, if the segment size is 160 bytes and the queue consists of

42 BurstRadar

25Gbps Burster

1Gbps Sender

Switch

Receiver

Monitoring
Server

10Gbps Link

t

100%

Figure 3.4: Testbed setup

a single 161 byte packet, then the reported deqQdepth of 2 segments would be converted

to 320 bytes, instead of the actual 161 bytes.

3.3 Evaluation

The evaluation of our BurstRadar prototype is centered around answering three ques-

tions. First, how efficient is BurstRadar, given that it selectively snapshots microburst

queues? Second, how well does BurstRadar handle multiple simultaneous microbursts?

And finally, what is the cost of BurstRadar in terms of hardware resources required in

the switching ASIC?

Testbed. The evaluation experiments were conducted in our hardware testbed which

consists of a Barefoot Tofino [139] switch and commodity servers equipped with Intel

XXV710 (25/10 Gbps) and Intel X710 (10 Gbps) NIC cards. To precisely generate net-

work traffic at µs resolution and cause microbursts as per the input network traces, we

wrote our own traffic generator application (450 lines of C++) using the PcapPlusPlus

library [159] with DPDK [63] as the datapath. The testbed is organized in a topology as

shown in Figure 3.4. Based on the data in [188], the sender continuously sends 1 Gbps

background traffic keeping the utilization of the test link under 10% for 90% of the time.

The burster emulates different sources of microburst, sending bursts at 25 Gbps such

that the queuing at the switch’s egress buffer (and the subsequent 100% link utilization)

3.3 Evaluation 43

 1

 10

 100

 0 20 40 60 80 100

P
a
c
k
e
ts

 P
ro

c
e
s
s
e
d
 (

%
)

Latency-Increase Tolerance Threshold (% RTT)

INT
BurstRadar

Oracle

(a) Cache Traffic

 1

 10

 100

 0 20 40 60 80 100

P
a
c
k
e
ts

 P
ro

c
e
s
s
e
d
 (

%
)

Latency-Increase Tolerance Threshold (% RTT)

INT
BurstRadar

Oracle

(b) Web TrafficFigure 3.5: Fraction of total number of packets processed for different latency-increase
thresholds

follows the distributions for duration and inter-arrival times as per the input trace.

Network Traces. Data on the frequency and duration of queuing microbursts

is currently not available publicly. Therefore, we took reference from the data on link

utilization bursts in a Facebook datacenter [188]. It provides the distribution of duration,

inter-arrival times and packet size for utilization bursts when the link utilization spikes

above 50%. We can safely assume that this is the worst case upper bound on the duration

and inter-arrival times for queuing microbursts, which entail 100% link utilization on the

egress link. We used the traffic data from two latency-sensitive applications – web, and

in-memory cache – to generate 10-second long traces.

Methodology. We compare BurstRadar to INT [77, 111] and to an offline Oracle

algorithm. The Oracle algorithm has access to the telemetry information of all the

packets and is thus able to capture queue snapshots as if they were captured by the

BQE (c.f. §3.2.1). It represents the optimal solution.

44 BurstRadar

 0

 5

 10

 15

 20

Worst Real-World Best

N
u

m
b

e
r

o
f

e
x
tr

a
 p

a
c
k
e

ts

 c
o

m
p

a
re

d
 t

o
 O

ra
c
le

 (
%

)

Packet Size Distribution

10% RTT

40% RTT

70% RTT

100% RTT

Figure 3.6: Number of extra packets marked compared to the Oracle solution for
different packet size distributions (Cache Traffic)

3.3.1 Efficiency

We quantify the overhead of continuous microbursts monitoring in terms of the fraction

of total number of packets that are required to be processed by the monitoring system.

We compare the overhead incurred by BurstRadar, INT and the Oracle algorithm for

the cache and web traffic in Figure 3.5. We observe in Figure 3.5a that even for a

low latency-increase threshold of 5% RTT, BurstRadar is 10 times more efficient than

INT. Since the RTT is approximately 25 µs in our testbed, this threshold translates

to 1.25 µs of queuing delay, or 1562.5 bytes worth of queuing at 10 Gbps. We verified

with our experiments that this threshold only filters out packets that are not involved

in microbursts. In practice, latency sensitive applications might not require such a low

threshold and therefore the overhead for BurstRadar would be even lower. Note that

at a latency-increase threshold of 0% RTT, BurstRadar would be equivalent to INT as

telemetry information for every single packet is processed. The efficiency result for web

traffic is similar to cache traffic as shown in Figure 3.5b.

3.3 Evaluation 45

Overhead of Extra Packets. While BurstRadar is more efficient than INT in

terms of the number of packets processed, it does process a few extra packets due to the

segments to bytes conversion of deqQdepth (see §3.2.4). The number of extra packets

identified by BurstRadar depends on the packet size distribution and the segment size of

the ASIC’s packet buffer. The worst case occurs when every packet is exactly one byte

larger than the segment size, thereby causing each packet to occupy two segments. The

best case occurs when the size of all packets is an integer multiple of the segment size.

In Figure 3.6, we plot the number of extra packets identified by BurstRadar compared

to the Oracle algorithm for the cache workload with different packet size distributions:

worst, real-world and best. For real-world, we use the cache workload’s original packet

size distribution [188]. We note that while the worst case shows about 21% extra packets

compared to the Oracle, the number of extra packets is typically only about 6% as

shown by the real-world case. In the best case, there are no extra packets. Figure 3.6

also shows that a larger latency-increase threshold leads to a higher proportion of extra

packets. This is because for a given packet-size distribution, larger the latency-increase

threshold, larger the number of packets in the remaining queue below the threshold, with

each packet contributing extra bytes to bytesRemaining. The real-world overhead for

web traffic is lower than the cache traffic due to larger packet sizes [188] and is omitted

because of space constraints.

3.3.2 Handling Concurrent Microbursts

As discussed in §3.2.3, multiple concurrent microbursts can result in a higher rate of

writes to the ring buffer than the rate of reads. If the ring buffer size is not sufficiently

large, ring buffer overwrites may occur, leading to the loss of telemetry information for

some of the marked packets. Currently, no data is available on how often we should

expect concurrent microbursts at different egress ports for a switch. Therefore, we

46 BurstRadar

 0

 1

 2

 3

 4

 100 200 300 400 500 600 700 800 900 1000

u
B

u
rs

t
P

k
ts

 M
is

s
e

d
 (

%
)

Ring Buffer Size (entries)

10 Concurrent uBursts
6 Concurrent uBursts
2 Concurrent uBursts

(a) Cache Traffic

 0

 1

 2

 3

 4

 100 200 300 400 500 600 700 800 900 1000

u
B

u
rs

t
P

k
ts

 M
is

s
e

d
 (

%
)

Ring Buffer Size (entries)

10 Concurrent uBursts
6 Concurrent uBursts
2 Concurrent uBursts

(b) Web Traffic

Figure 3.7: Fraction of microburst packets missed with concurrent microbursts for
different ring buffer size

simulate2 microburst traffic on multiple ports of a switch using 10-second long traces of

cache and web traffic from [188]. In Figure 3.7, we plot the fraction of microburst packets

missed by BurstRadar for different ring buffer sizes (10 to 1k entries) when microbursts

occur on 2, 6 and 10 ports concurrently. With just 300 entries, BurstRadar is expected

to be able to handle 10 simultaneous microbursts (cache traffic) with a packet miss rate

lower than 1%. About 1000 entries are required to reduce the miss rate to absolute 0%.

This suggests that BurstRadar is resilient and can handle simultaneous microbursts with

a modestly-sized ring buffer.
2This experiment is currently not supported by our testbed due to lack of equipment to generate

multiple concurrent microburst traffic.

3.4 Summary 47

Table 3.1: Hardware resource consumption of BurstRadar (ring buffer size of 1k entries)
compared to the baseline switch.p4

Resource switch.p4 BurstRadar Combined
Match Crossbar 50.13% 3.39% 53.52%
Hash Bits 32.35% 4.83% 37.18%
SRAM 29.79% 4.06% 33.85%
TCAM 28.47% 0.69% 29.16%
VLIW Actions 34.64% 4.69% 39.33%
Stateful ALUs 15.63% 12.5% 28.13%

3.3.3 Resource Utilization

In Table 3.1, we compare the hardware resources required by our BurstRadar proto-

type (with a ring buffer of 1k entries) to that required by a production (closed-source)

version of switch.p4. The switch.p4 is a baseline P4 program that implements various

networking features (L2/L3 forwarding, VLAN, QoS, ACL, etc.) for a typical datacenter

ToR switch. A simplified open-source version of switch.p4 is available at [48]. We note

that BurstRadar’s overall resource consumption is low for various hardware resources.

BurstRadar consumes a relatively larger proportion (12.5%) of stateful ALUs as they are

used for the computations in our Snapshot algorithm and for managing the ring buffer

pointers. The SRAM is used for the exact match-action tables and for implementing the

ring buffer. Despite the ring buffer size of 1k entries, BurstRadar’s SRAM requirements

remain low. Also, the combined usage of all resources by switch.p4 and BurstRadar is

well below 100%. This means that BurstRadar can easily fit on top of switch.p4.

3.4 Summary

Detecting microbursts in a datacenter network and identifying the contributing flows is

difficult because microbursts are unpredictable and last for 10’s or 100’s of µs. BurstRadar

leverages programmable switching ASICs to implement continuous and efficient monitor-

ing of microbursts by capturing the telemetry information of only the packets involved

48 BurstRadar

in microbursts. Our testbed evaluation using production network traces demonstrates

that BurstRadar can detect microbursts with 10 times less overhead compared to exist-

ing approaches and is resilient to simultaneous microbursts. This chapter describes our

BurstRadar prototype, as well as the design decisions and considerations in dataplane

packet cloning and ring buffer sizing. Our work demonstrates that modern programmable

ASICs have made it practical to detect and characterize microbursts at multi-gigabit link

speeds in high-speed datacenter networks.

BurstRadar primarily captures local queue information which is sufficient to find

the root cause of microbursts in most cases. However, in cases involving transient root

causes, finding the root cause may require global information. For example, data from

BurstRadar can help to conclude that packets from certain set of servers arrived at the

same time and that caused the microburst. However, it cannot immediately tell “why”

they arrived at the same time – were they sent in a synchronous manner by the servers

or they got synchronized within the network. Answering this question requires capturing

global telemetry information and our follow-up work called SyNDB [105] (outside of this

thesis) is able to achieve this.

Chapter 4
SQR: In-network Packet Loss Recovery

from Link Failures for Highly Reliable

Datacenter Networks

In the previous chapter, we described BurstRadar that contributes towards mitigating

the increase in tail FCTs due to unexpected congestion events. As described in Section

1.1 and shown in Figure 1.2, in order to ensure bounded tail FCTs, we also need to

handle link failure events. Now link failure events are of two types: (i) fail-stop: where

the entire link goes “down” and no packets can travel in either direction; and (ii) gray:

where the link is “up” but randomly drops a few packets due to packet corruption. Both

types of link failures cause packet loss that lead to increased tail FCTs due retransmis-

sion delays and retransmission timeouts. In this chapter, we address the problem of

increased tail FCTs due to fail-stop link failures through the design and implementation

of Shared Queue Ring (SQR). We first describe in more details the problem of fail-stop

link failures in datacenter networks (Section 4.1) followed by a measurement study (Sec-

tion 4.2) which demonstrates that existing link failure management techniques fall short

50 SQR

of keeping the tail FCTs low under link failures. We then present the detailed system de-

sign of SQR (Section 4.3) before presenting the evaluation results (Section 4.4). Finally,

we discuss other related issues (Section 4.5) before concluding the chapter (Section 4.6).

For the remaining of this chapter, we refer to fail-stop link failure simply as “link failure”.

4.1 Introduction

Datacenter computing is dominated by user-facing services such as web search, e-commerce,

recommendation systems and advertising [8]. These are soft real-time applications be-

cause they are latency-sensitive and the failure to meet the response deadline can ad-

versely impact user experience and thus revenue [8]. Such application-level deadlines can

be translated into flow completion time (FCT) targets for the network communication

between the worker processes that work together to serve the user requests [180]. There

have been many proposals to reduce the FCTs of latency-sensitive flows for user-facing

soft real-time applications under normal network conditions [8, 10, 87, 131, 136, 180].

In this chapter, we study the problem of reducing FCTs in the presence of link failures.

Datacenter networks typically use commodity hardware components mainly to save

costs. These include line cards, transceivers, cables, connectors, etc. Failure of any of

these components leads to failure of the corresponding network links. Now, the failure

rate of these individual components is very small – about 10-5 failures per hour [67].

However, in large warehouse-scale datacenters, since there are hundreds of thousands of

these components, the network-wide failure rate can be very large (101). As a result,

link failures are common in datacenter networks. A large-scale study across a Microsoft

datacenter reported 136 link failures per day at the 95th percentile [73]. The resulting

packet loss from link failures has an outsized impact on short latency-sensitive flows.

Such flows typically operate with a small TCP congestion window so when there is packet

loss, the TCP receivers cannot send enough duplicate ACKs within one RTT [41]. As a

4.1 Introduction 51

Link failure management

Route recoveryLink failure
detection

Pkt loss
recovery

Protection Restoration

(SQR)

Host-based In-network

(e.g., TCP)

(e.g., F10)

(e.g., Conga, Hula,
SPIDER, F10)

(e.g.,
ShareBackup)

Figure 4.1: Design space for link failure management.

result, fast retransmission is rarely triggered and the lost packets are often recovered via

retransmission timeouts (RTOs) [184]. Such timeout events result in much larger delays

than the lifespan of the short flows and significantly increase FCT [185].

A large number of approaches have previously been proposed to reduce the impact

of link failures, including fast re-routing [35, 147, 158, 162, 174], flowlet-based load bal-

ancing [7, 109] and re-configurable topologies [122, 181]. All these approaches inevitably

rely on link failure detection which has a minimum delay. Among them, the state-of-

the-art ShareBackup [181] takes as little as 730 µs to recover from a link failure and it

relies on F10’s link failure detection technique [122] which has a delay of about 30 µs.

This total delay of 760 µs on a 10 Gbps link translates to about 950 KB, and some 600

1500-byte packets could be lost. Even if we can reroute immediately after detecting the

link failure (30 µs) using a pre-computed backup path, some 25 1500-byte packets could

still potentially be lost. This suggests that while existing proposals can achieve low FCTs

under normal network conditions, they cannot maintain or keep these low FCTs stable

under link failures, even when using state-of-the-art link failure recovery techniques. In

other words, in the face of link failures, the datacenter network stack today is unable to

provide any tight bounds or strong reliability guarantees (up to five or six 9’s) on FCTs

or the network latency.

We observe that to completely mask the effect of packet loss and the resulting long

52 SQR

recovery latency, the network has to be responsible for packet loss recovery, instead of

relying on end-to-end recovery. To this end, we propose Shared Queue Ring (SQR), an

on-switch mechanism to recover packets that could be lost during the period from the

detection of a link failure to the completion of the subsequent network reconfiguration.

The overall workflow for SQR is as follows: SQR makes copies of recently transmitted

packets and caches them for a configurable amount of time. In the meantime, a link

failure detection mechanism continuously looks for link failures. If no link failure occurs,

SQR simply drops the cached copies of packets. However, if a link failure is detected,

the failure detection mechanism informs SQR about the same and also activates a route

reconfiguration mechanism. In this case, SQR continuous to buffer the packet copies

until the route reconfiguration mechanism signals SQR that a backup path has been

established. SQR then retransmits the cached packet copies on the backup path. SQR

is therefore complimentary to existing methods of link failure detection and route recon-

figuration as shown in Figure 4.1. Furthermore, it operates locally and independently

at each switch without requiring any coordination with other switches.

It is not possible to know in advance if a link will fail when a packet is sent, since link

failures occur randomly and cannot be predicted [73]. We define the route failure time to

be the worst-case time taken to detect a link failure and for the network to recover. We

observe that by estimating the upper bound on the route failure time, a switch can cache

a copy of recently sent packets for this duration. Then, in the event of a link failure, we

can avoid packet loss by retransmitting the cached copy of these previously transmitted

packets on the backup path. Naively, this can be implemented as a delayed queue that

temporarily delays (stores) every packet passing through it for a configurable amount

of time. When the link fails, we can retransmit the cached packets from this delayed

queue. An ideal delayed queue is where each packet in the queue has a future timestamp

at which it would be sent and the queue is ordered by these timestamps. Unfortunately,

no queuing engine today readily provides the queuing discipline required to realize such a

4.1 Introduction 53

Table 4.1: ASIC packet buffer trends
ASIC Year Packet Buffer
Trident+ [28] 2010 9 MB
Trident II [29] 2013 12 MB
Trident II+ [56] 2015 16 MB
Tomahawk+ [31] 2016 22 MB
Tomahawk II [32] 2017 42 MB

delayed queue. Furthermore, existing queuing engines, including those in programmable

ASICs, cannot be programmed to implement a custom packet scheduling algorithm that

implements a delayed queue. To realize a delayed queue in any other way, the basic

primitive required is packet storage. In a switch dataplane, even a programmable one,

the packets can only be stored in the packet buffer of the queuing engine [27]. This

packet buffer storage can only be utilized by placing packets into the default FIFO

queues, which send out packets as fast as possible without introducing any delay.

In this chapter, we describe a technique to emulate a delayed queue in the dataplane

of a programmable switch. Our emulated delayed queue differs slightly from the ideal

delayed queue, wherein it delays the packet for “at least” the specified amount of time,

instead of “exactly” the specified amount of time. We do so by retaining a copy of a

sent packet in a FIFO queue. If this packet reaches the head of the queue before being

sufficiently delayed, we use egress processing to route this packet back into the FIFO

queue. While this approach is, in principle, sufficient to emulate a delayed queue, it is

challenging to ensure that no packet is missed out and the packets are retransmitted

in order. Furthermore, there are two costs involved – the egress pipeline processing

required to build and maintain the emulated delayed queue, and the additional packet

buffer required for the packets in the delayed queue (i.e. the cached packets). A naive

implementation could inflict additional egress processing delays on other flows going

through the switch. SQR avoids this with a Multi-Queue Ring architecture that exploits

unused egress processing capacity. The egress pipeline is provisioned to support all

54 SQR

ports at full packet rate. In practice, most networks will almost always have spare egress

processing capacity available [188]. We only use the idle ports so that other traffic

passing through the switch is uninterrupted.

We implemented SQR on a Barefoot Tofino [139] switch1. We show using experiments

on a hardware testbed using trace-driven workloads that:

• SQR can completely mask the effect of link failures from end-point transport by

preventing packet loss;

• Coupled with current link failure detection (F10 [122]) and route reconfiguration

schemes (ShareBackup [181]), SQR can reduce the tail FCT by 10 to 1000 times

for web and data mining workloads in the presence of link failures; and

• SQR’s overhead in terms of packet buffer consumption, additional egress processing

and ASIC hardware resources is low, thereby demonstrating the feasibility of our

solution.

Gill et al. observed that network redundancy is not entirely effective in reducing the

impact of link failures [73]. Our work addresses this gap by enabling a seamless hand-off

of packets from a failed route to an alternative route, thereby fully exploiting available

multi-path redundancy. To the best of our knowledge, we show, for the very first time,

that it is possible to handle link failures without a single packet being lost or reordered in

a multi-gigabit datacenter network2. Our proposed approach was not previously feasible

because switches would not have enough packet buffer to cache packets for the route

failure time. However, recent innovations have substantially reduced the route failure

time (65 ms in Portland [140] to 760 µs in ShareBackup [181]) so that the number of

packets to be cached is significantly reduced. On the other hand, on-chip shared packet

buffer for switching ASICs has increased more than fourfold over the last 5-7 years (see
1A simple version of SQR is available at: https://github.com/NUS-SNL/sqr
2As long as SQR uses the correct estimates for the worst-case link failure detection and route recovery

delays.

4.2 Motivation 55

h1

sw1

sw3 sw4

sw7 sw8 sw9 sw10

sw5 sw6

sw2

h2 h3 h4

Figure 4.2: Testbed.

Table 4.1), making in-network seamless packet hand-off practical.

4.2 Motivation

Link failures are dominated by connection problems such as cabling and carrier signal-

ing/timing issues [62]. Gill et al. observed that link failures were more common than

device failures, and some 136 link failures were observed daily at the 95th percentile [73].

Link failures usually last for a few minutes and exhibit a high variability in their rate of

occurrence.

For any solution that tries to minimize the effects of link failures, there are two

main delays involved: (i) link failure detection delay, the time it takes to detect that a

link has failed, and (ii) network reconfiguration delay, the time required to reconfigure

the network and restore route connectivity in response to the link failure. Together we

refer to the sum of these delays as the route failure time. In this section, we show that

although the route failure times have reduced from 65 ms in Portland [140] to 760 µs in

ShareBackup [181], short latency-sensitive flows still suffer from high FCTs when there

are link failures. To the best of our knowledge, ShareBackup currently has the lowest

reported route reconfiguration time.

56 SQR

Setup. We do not have access to an optical switch, and so we emulated Share-

Backup’s behavior in our testbed by disabling a link and enabling it again after Share-

Backup’s route reconfiguration time. We refer to this simulation of ShareBackup as

ShareBackup′ or SB′. Our testbed (Figure 4.2) consists of a fat-tree topology built

using a partitioned Barefoot Tofino switch (similar to [106]) and Intel Xeon servers

equipped with Intel X710 NICs. All links are 10 Gbps and the network RTT between

the hosts is about 100 µs. Each host runs Linux kernel 4.13.0 with TCP CUBIC.

SACK is enabled and RTOmin is set to the smallest possible value of 4 ms. Host h2

sends short, latency-sensitive (≤100 KBytes [7]) TCP flows to host h4 via the path

sw8 → sw4 → sw2 → sw6 → sw10 → h4. The flow sizes are drawn from the distri-

bution of a web search workload [8]. The flows are sent one at a time with no other

network traffic. Since the FCT of a small flow is less than 2 ms in normal case, we

inject link failures between switches sw6 and sw10 every 20 ms3 to ensure that each flow

experiences link failure at most once. To emulate ShareBackup’s route reconfiguration,

we use precise dataplane timer mechanisms to generate a link failure that lasts for ex-

actly 760 µs. We use a deflect-on-drop switch dataplane mechanism to identify the flows

affected by link failures.

FCTs under Link Failures. Figure 4.3 shows the FCTs of the flows where failure-

affected flows form three distinct horizontal clusters4. The cluster of FCT values around

1 second is due to the SYN or SYN-ACK packet loss since the default retransmission

timeout (RTO) for these packets is set to 1 second [156]. The middle two clusters of FCT

values (∼10 ms and ∼100 ms) are due to RTOs being triggered either due to tail losses

in a cwnd or the complete loss of all packets in a cwnd. For failure affected flows, we did

not observe any fast retransmissions. Overall, we see that when there are contiguous

packet losses due to link failures, even with state-of-the-art fast recovery mechanisms

like ShareBackup, the FCTs for short flows can increase by several orders of magnitude.
3This failure injection rate only facilitates faster experimentation and does not influence the results.
4The small gap in the flow size is an artifact of the web search workload [8] that we use.

4.2 Motivation 57

10
2

10
3

10
4

10
5

10
6

10
7

 0 20 40 60 80 100

F
C

T
 (

u
s
)

Flow Size (KBytes)

Failure No failure

Figure 4.3: FCTs of latency-sensitive web search flows [8] under link failures with
ShareBackup as route recovery mechanism.

To further understand this result, we measured the TCP cwnd sizes for the above flows

under no link failure (no loss) conditions. We found that, at 90th percentile, the cwnd

size is about 10 MSS segments which is the default initial cwnd size on Linux [44]. The

maximum observed cwnd size was 32 MSS segments which translates to 46,336 bytes with

MSS being 1448 bytes. However, at 10 Gbps link speed, a route failure time of 760 µs

translates to 950,000 bytes, i.e. 656 MSS segments after accounting for the Ethernet

preamble, framing, and inter-frame gap. Therefore, the route is in the failed state for a

much larger duration than the time it would take for a cwnd worth of packets to traverse

a link in the network. This implies that it is very unlikely to have packet losses as “holes”

within a cwnd so as to trigger fast transmissions. In our experiment with short flows,

link failures always triggered expensive RTOs resulting in significantly longer FCTs.

The results presented above also hold true for other deployed TCP variants (DCTCP [8],

TIMELY [131]) since they all employ the same mechanism for handling packet loss. In

summary, our results (which concur with the results in [37]) show that the tail and whole

window losses dominate in case of short flows, triggering RTOs and inflating FCTs under

link failures. Therefore, to reduce tail FCTs under link failures, we need to avoid RTOs.

Discussion. The impact of RTOs can be alleviated to an extent by using microsecond-

58 SQR

level RTOmin [101], which requires significant modifications to the end-host network

stack [175]. A small RTOmin however risks reducing throughput due to spurious retrans-

missions [151] and leads to increased overall packet loss for incast-like scenarios [101].

Deciding on the right value for RTOmin is tricky and it is typically set at 5 ms in pro-

duction datacenters [37, 40]. At this value, the majority of latency-sensitive flows are

small enough to complete in one RTT [75] and therefore under link failures they would

take at least twice as long to complete, irrespective of the value of RTOmin.

4.3 SQR Design

In §4.2, we argued that to eliminate high FCTs under link failures, we need to avoid

RTOs. SQR therefore focuses on fast in-network recovery of packets lost during the

route failure time, without involving the end hosts. Our key idea is to continuously

cache a small number of recently transmitted packets on a switch and in the event of a

link failure, retransmit them on the appropriate backup network path.

SQR runs entirely in the dataplane of an individual switch. Our design assumes the

Portable Switch Architecture (PSA) [49] consisting of an ingress pipeline, a Buffer and

Queuing Engine (BQE), and an egress pipeline. When an incoming packet enters the

ingress pipeline, the primary egress port is determined by the network’s routing scheme.

Subsequently, the packets from the latency-sensitive applications will be marked if it

belongs to a latency-sensitive flow5 that needs to be protected by SQR. The packet passes

through the BQE normally and when it arrives at the egress pipeline, it is subjected to

SQR’s processing if it is marked.

In the egress pipeline, SQR by default forwards a packet to the destination port and

be proceeded normally. However, if a packet is marked, SQR performs the additional

task of creating a copy of the packet and caches the copy for a time duration equal to the
5Latency-sensitive applications can request SQR’s protection by using a pre-defined set of TCP port

numbers, IP Header TOS bits or VLAN IDs.

4.3 SQR Design 59

Egress pipelineBQE

…

 Delay >= ?δ

Artificial queue
…

Pkts to cache

Queue Ring

Yes

No

…

Port

FIFO Queues

Figure 4.4: Caching packets on switch using a FIFO queue.

link failure detection delay (§4.2). By doing so, SQR ensures that packets are not lost

if a link fails later. After this delay, SQR checks if the cached packet’s primary egress

port (on which the original packet was sent) is still operational. If the link is up, then

it means that the original packet was transmitted successfully and the cached copy of

the packet is dropped. However, if the link is down, then the original packet was likely

lost and a copy of the packet is cached again for time equal to the network configuration

delay (§4.2). This additional delay allows the network to configure the backup path

without losing the cached packets. After this second delay, the cached packets are sent

on the backup path (port).

SQR’s operation requires the following information in the switch dataplane: (i) The

link status of the ports (up or down), (ii) the backup port (route) for each primary

port (route) to a destination top-of-the-rack switch. SQR integrates with a link failure

detection mechanism such as the one used in F10 [122] to update and maintain the status

of the ports (albeit after a delay). It also integrates with a route recovery scheme (e.g.

ShareBackup [181]) to determine the backup port for each primary port.

60 SQR

4.3.1 Caching Packets on the Switch.

Conceptually, the caching of packets can be achieved with a delayed queue, where each

individual packet entering the queue is delayed for a fixed minimum amount of time

(termed as delay time) before it leaves the queue. Unfortunately, there is no such prim-

itive in the current switching ASICs. Furthermore, the queuing engines, including those

in programmable ASICs do not support programming such custom scheduling to real-

ize a delayed queue inside the queuing engine. In addition, packet storage, which is

required to realize a delayed queue, is only available inside the queuing engine in the

form of FIFO queues. Therefore, it is not straightforward to realize a delayed queue in

existing switching ASICs.

SQR achieves the delayed queue functionality using a “Queue Ring” that combines

the BQE’s FIFO queues, egress pipeline processing and high-resolution timestamping.

Today’s programmable switches support multiple FIFO queues per port (all inside the

BQE) and the BQE handles all queues across all ports on the switch. The high-level

idea (shown in Figure 4.4) is to place the packets to be cached inside a spare FIFO

queue of a port on the switch (queue selection details in §4.3.2). When the FIFO queue

transmits the cached packet at a later time, high-resolution timestamping is used to

check if the packet has been delayed for the required duration δ. If the packet is not

sufficiently delayed (delay < δ), the egress pipeline sends the cached packet back to the

FIFO queue. Once a packet is sufficiently delayed (delay >= δ) after passing through

the FIFO queue one or more times, it exits the Queue Ring. This helps to build up

an artificial queue of cached packets, since effectively no packet exits without being

sufficiently delayed. In the steady state, where new packets enter the Queue Ring at

a fixed rate R, the artificial queue build-up remains fixed and equal to R × δ. Notice

that each packet accumulates delays from two sources – (i) the queuing delay due to the

artificial queue build-up, and (ii) the egress processing delay incurred in sending a packet

4.3 SQR Design 61

back to the FIFO queue. Hereafter we will refer to the FIFO queue used to implement

a Queue Ring as the caching queue.

4.3.2 Multi-Queue Ring Architecture

Our Queue Ring approach utilizes the egress processing of the port associated with the

caching queue to emulate the delayed queue behavior. Unfortunately, the processing of

these cached packets may affect the normal traffic passing through other queues of that

port. Therefore, to minimize the impact on existing traffic, we do not use the same

port for packet caching. Instead, SQR assigns one queue from the multiple queues [46]

of each port as a caching queue and spreads the queued packets across a set of these

caching queues. In particular, when a cached packet is to be sent back to a FIFO queue

for additional delay, SQR dynamically chooses the caching queue that belongs to a port

with the least utilization. We refer to this architecture that consists of multiple caching

queues from the BQE that are connected to each other by the egress pipeline to form

a ring as the Multi-Queue Ring (see Figure 4.5). We exploit the fact that while the

egress pipeline is provisioned to support all ports at full packet rate, there is almost

always spare egress processing capacity available in the switch under typical network

load conditions [188]. The spare capacity, however, is available on different ports at

different times. Using a ring of multiple queues allows SQR to exploit the spare capacity

by dynamically changing the set of low utilization ports.

An artifact of SQR’s Multi-Queue Ring architecture is that when the cached packets

exit after being buffered, they do not exit in the same order as they originally entered

the Multi-Queue Ring. Therefore, in the event of a link failure, the exiting cached

packets need to be ordered before they are sent to the backup port. To do so, SQR uses

a counter-based packet sequencing mechanism. SQR’s Multi-Queue Ring architecture

is implemented with three components running in the egress pipeline (also shown in

Figure 4.5): (i) a delay timer (§4.3.3) to keep track of each cached packet’s elapsed time,

62 SQR

…
…

…

Egress pipelineBQE

Pkt In

…

Primary
port

Leastloaded
port

Backup
port

Ingress pipeline

Mark

Make a copy

Delay timer

Dynamic Queue
 selection

Pkt order logic

Pkt out

Caching queue

Send back to BQE

Figure 4.5: Multi-Queue Ring architecture.

(ii) a queue selection algorithm (§4.3.4) to dynamically choose the next caching queue,

and (iii) a packet order logic (§4.3.5) to order the cached packets before re-transmission.

4.3.3 Delay Timer

The delay timer first computes how long each packet has been buffered in the Multi-

Queue Ring (called ElapsedTime). To do so, when a copy of the original packet

is created, the delay timer attaches the egress timestamp provided by the dataplane

(called StartEgressTstamp) to the copied (cached) packet as metadata. As the cached

packet passes through the Multi-Queue Ring, it enters the egress pipeline one or more

times. Each time in the egress pipeline, the delay timer calculates the time elapsed

so far (ElapsedTime) by taking the difference between the current egress timestamp

(CurrentEgressTstamp) and the packet’s StartEgressTstamp. The delay timer then

compares the ElapsedTime with the required delay time (δ) to check if the packet has

been buffered for at least the delay time. If so, the delay timer would set the DelayEnough

field in the packet (later used by the queue selection algorithm in §4.3.4). The delay

timer logic is summarized in Algorithm 2. Because of limited bit-width (n bits) clock

register in the switch dataplane, the calculation needs to handle cases with value wrap

around.

Delay Time (δ). This is the time for which each copied (cached) packet needs to

4.3 SQR Design 63

Algorithm 2: Delay Timer.
Initialization: ElapsedTime = 0, pkt.DelayEnough = 0;

1 foreach marked pkt in egress pipeline do
2 diff = CurrentEgressTstamp − StartEgressTstamp;
3 if diff > 0 then
4 ElapsedTime = diff;
5 else
6 ElapsedTime = 2n+ diff;
7 if ElapsedTime => δ then
8 pkt.DelayEnough = 1;

end

be buffered on the switch. Since there is a delay in detecting link failures, δ is initially

set equal to the upper bound of the link failure detection delay. When a link failure

is detected, SQR dynamically increases δ by value equal to the network reconfiguration

delay so as to hold the cached packets until the network reconfiguration is complete.

Since the total packets being buffered on the switch is proportional to δ (c.f. §4.3), its

value determines SQR’s packet buffer requirement (§4.4.4).

4.3.4 Dynamic Queue Selection

Recall from §4.3.2 that SQR designates one queue on each port as the caching queue. In

the Multi-Queue Ring, each time a cached packet is to be sent from the egress pipeline

back to the BQE, the queue selection logic (Algorithm 3) decides to which caching queue

to forward the packet. As the goal is to minimize the impact on other traffic, SQR selects

the next caching queue from a port which has the least utilization at the current moment

(called the LeastLoadedPort). A packet is sent to the LeastLoadedPort in the following

cases: (i) if it is a freshly made copy of an original packet and the PrimaryPort is UP, or

(ii) if it is an already cached packet that has not been sufficiently delayed. A sufficiently

delayed cached packet (as indicated by the Delay Timer in §4.3.3) is dropped if the

primary link is up. If the primary link is down and the incoming packet is an original

64 SQR

Algorithm 3: Dynamic Queue Selection.
Input: PrimaryPort, LeastLoadedPort, BackupPort

1 foreach marked pkt in egress pipeline do
2 if PrimaryPort == UP then
3 if cached pkt then
4 if pkt.DelayEnough ! = 1 then
5 Send pkt to the LeastLoadedPort;
6 else
7 Drop cached pkt;
8 else
9 Make a copy and send the copy to LeastLoadedPort;

10 else
11 if cached pkt then
12 if pkt.DelayEnough ! = 1 then
13 Send pkt to the LeastLoadedPort;
14 else
15 Send pkt to BackupPort;
16 else
17 Send pkt to BackupPort;

end

packet or a sufficiently delayed cached packet, it is sent to the caching queue of the

backup port for retransmission.

Tracking Port Utilization. SQR tracks the egress utilization of all the ports by

maintaining a moving window of the number of bytes transmitted on each port. The

size of the window is the time interval over which the number of transmitted bytes are

accumulated. We discuss window sizing in §4.3.6. SQR maintains a LeastLoadedPort

and the corresponding LeastUtilization. When an original packet arrives at the egress

pipeline, the utilization of its egress port is updated. If this utilization is lower than the

LeastUtilization, SQR will update the LeastUtilization to the current utilization

and the LeastLoadedPort to the current egress port. When an original packet is trans-

mitted on the LeastLoadedPort, SQR will also update the value of LeastUtilization.

4.3 SQR Design 65

Algorithm 4: Packet Order Logic.
Input: NextPktTag, PrimaryPort, BackupPort

1 foreach marked pkt in egress pipeline do
2 if PrimaryPort == UP then
3 if pkt.DelayEnough == 1 then
4 NextPktTag = PktTag + 1;
5 else
6 if PktTag == NextPktTag then
7 NextPktTag + = 1;
8 else
9 if PktTag > NextPktTag then

10 Send pkt to BackupPort;
end

4.3.5 Packet Order Logic

When a link failure happens, the delay timer (§4.3.3) and the dynamic queue selection

(§4.3.4) would send the cached copies of recently transmitted packets to the backup

port (path). However, since cached packets are circulated through a ring of queues, the

order in which they are sent to the backup port may not be the same as the original

arrival sequence. To ensure that packet ordering is preserved, the packet order logic

(Algorithm 4) first needs to know the original ordering of the packets. To achieve this,

the packet order logic consists of a monotonically increasing packet counter in the egress

pipeline. When an original packet to be protected by SQR enters the egress pipeline,

the counter value (PktTag) is added to the packet as metadata and gets copied to the

corresponding cached packet. The packet order logic also maintains an expected next

counter number (NextPktTag). Both the PktTag and the NextPktTag are used to ensure

correct packet ordering as following: (i) if the cached packet’s PktTag is equal to the

expected NextPktTag, SQR just sends the packet and updates the NextPktTag (lines

6-7); (ii) if the cached packet’s PktTag is larger than the NextPktTag, it will send this

packet back to the backup port’s caching queue and wait for the packet with the correct

PktTag (line 9-10) to be sent first. When a cached packet with a PktTag leaves the

66 SQR

switch due to either being dropped after sufficient buffering or sent on the backup path,

SQR updates the NextPktTag (lines 4, 7). Since the cached packets are ordered before

being sent, this may add extra delay on recovery time (§4.4.2).

4.3.6 Implementation

We implemented SQR on a Barefoot Tofino switch [139] in about 1,100 lines of P4 code.

A common action performed by SQR is to send a packet from the egress pipeline back

to the BQE. This action is achieved with two primitives, egress-to-egress cloning (also

called mirroring) and packet drop. For each cached packet, the SQR metadata is added

when the cached packet is first created and is removed before the packet is sent out of

the switch. The SQR metadata contains three fields: (i) PktTag: used by packet order

logic for reordering (§4.3.5); (ii) StartEgressTstamp: used by delay timer to record

when the cached packet was created (§4.3.3); (iii) PrimaryPort: used by queue selection

logic to track the cached packet’s primary port (§4.3.4).

The delay timer, queue selection logic and the packet order logic are implemented

using a series of exact match-action tables and stateful ALUs. The delay time is stored

in a dataplane register and can be dynamically configured based on the link failure

detection mechanism being used. For computing link utilization (§4.3.4), we set the

moving window size larger than the network RTT to avoid sensitivity to transient sub-

RTT traffic bursts [7]. At the same time, we also avoid setting the window so large that

it would aggregate the bytes of entire short flows and make SQR sluggish to react to

the flow churn. Since the network RTT in our testbed is about 100 µs and the minimum

FCT in our evaluation workloads is about 157 µs, we used a window size of 150 µs in our

prototype. The LeastLoadedPort and LeastUtilization are also maintained using

dataplane registers. We note that SQR’s implementation requires standard primitives

such as egress mirroring, encap/decap (for SQR metadata), registers and match-action

tables which are specified in the PSA [49] and also available in fixed-function ASICs.

4.4 Performance Evaluation 67

Therefore, SQR can be implemented on any programmable ASIC based on the PSA [49]

or it could be baked into fixed-function ASICs.

4.4 Performance Evaluation

We evaluate our SQR prototype by answering three questions: (1) How effective is

SQR in masking link failures from end-point TCP stack, such that RTOs will not be

triggered? (2) When SQR is integrated with other network reconfiguration systems

(e.g. ShareBackup), how much is the reduction in FCTs under link failures for latency-

sensitive workloads? (3) What is the cost (overhead) of SQR in terms of effect on other

traffic and consumption of resources in the switch hardware? We perform the evaluation

on the same hardware testbed as described in §4.2 unless otherwise mentioned.

4.4.1 Experimental setup

Workloads. We consider two empirical workloads with short flows taken from produc-

tion datacenters: a web search workload [8] and a data mining workload [75]. The CDF

of flow sizes for these two workloads is shown in Figure 4.6. For both the workloads, we

consider flow sizes up to 100 KB since these represent latency-sensitive flows [7]. We use

a server-client model in which a server sends TCP flows of sizes drawn from these two

distributions to a client. Specifically, in our testbed (Figure 4.2), host h2 sends TCP

flows to host h4.

Background Traffic. We run the Spark TPC-H decision support benchmark to

generate background traffic. It contains a suite of database queries running against a

12 GB database on each worker. The master node is h4 (see Figure 4.2) which commu-

nicates with the slave nodes h1 and h2 via the paths sw10 → sw6 → sw2 → sw4 → sw7

and sw10 → sw6 → sw2 → sw4 → sw8, respectively. The query job is submitted to the

master node and multiple tasks run on the three nodes.

68 SQR

Baseline Schemes. Recall that SQR integrates with a link failure detection and

a network reconfiguration scheme (§4.3). We consider the link failure detection method

suggested in F10 [122] (detection delay = 30 µs) and two different network reconfigu-

ration methods: ShareBackup [181] (SB′) and local rerouting (LRR), in the following

configurations:

1. SB′: As explained in §4.2, SB′ is our emulated version of ShareBackup that takes

an additional 730 µs to restore network connectivity via backup switches after a link

failure is detected.

2. LRR: Local ReRouting runs a path probing protocol [7, 109] to proactively-determine

a backup port for each primary port. When the link on a primary port is detected

to be down, the traffic is immediately re-routed to the backup port thus incurring no

network reconfiguration delay.

3. SB′+SQR: SQR integrated with SB′ involves setting the backup port to be the

primary port itself since ShareBackup uses optical switching to restore connectivity

on the same port. The initial delay time is 30 µs and is increased to 760 µs on link

failure detection (§4.3.3).

4. LRR+SQR: SQR integrated with LRR involves setting the backup ports to the ones

determined proactively. The delay time is 30 µs at all times.

Link Failure Model. SQR helps with link failures where multiple paths are avail-

able. Therefore, we inject a link failure every 20 ms6 between sw6 and sw10 while h2 is

sending traffic to h4 (Figure 4.2). Similar to §4.2, for SB′ we restore the failed link after

the route failure time (760 µs).
6This failure injection rate only facilitates faster experimentation and does not influence the results.

4.4 Performance Evaluation 69

 0
 0.2
 0.4
 0.6
 0.8

 1

100 10
3

10
4

10
5

10
6

10
7

10
8

C
D

F

Flow Size (Bytes)

Data Mining
Web Search

Figure 4.6: Flow size distributions used in evaluation.

4.4.2 Masking Link Failures from TCP

First, we evaluate SQR’s effectiveness in masking link failures from the end-point trans-

port protocol (TCP). We compare TCP’s behavior under link failure when running SB′

alone to that when running SB′ along with SQR. h2 starts an iperf client to send TCP

traffic to an iperf server running on h4 (see Figure 4.2). To properly observe the TCP

sequence numbers from captured traces, we set TSO off (only for this experiment). We

use n2disk [143] to capture the packet traces and the tcp probe kernel module to cap-

ture the TCP sender’s connection statistics. About 2 seconds after starting the flow, we

inject a link failure on the link between the switches sw6 and sw10. Figure 4.7 shows one

instance of the result. Results are similar when link failure is introduced at a different

location in the network.

Figure 4.7a shows the evolution of the TCP sender’s cwnd. We see that with SB′

alone, the TCP sender reduces its cwnd size drastically when there is a packet loss due

to link failure. However, when SB′ is enhanced with SQR, the link failure has no impact

on the TCP sender and the cwnd grows like the no-failure case. In Figure 4.7b, we plot

the TCP stream’s sequence number of packets as sent by the sender. With SB′ alone,

when the link fails, the TCP sender stops sending due to absence of ACKs and times

out leading to a disruption time of about 12 ms. By the time the TCP sender recovers

from the timeout, SB′ has already restored the connectivity and the sender resumes by

first retransmitting the lost packets. However, when SB′ is coupled with SQR, the TCP

70 SQR

 0

 50

 100

 150

 200

 250

 300

 0 0.5 1 1.5 2 2.5 3 3.5
c
w

n
d

 (
M

S
S

 s
e

g
m

e
n

ts
)

Time (seconds)

No failure
SB´+SQR w/ failure
SB´ w/ failure

(a) TCP congestion window

 9.16

 9.2

 9.24

 9.28

 0 2 4 6 8 10 12 14 16 18 20

Disruption time = 11.8ms

Retransmission

R
e
la

ti
v
e
 S

e
q
 #

 (
1
0

8
)

Time (ms)

SB´ + SQR w/ failure
SB´ w/ failure

(b) TCP sequence number (zoomed view after 2 seconds)

Figure 4.7: TCP sender’s cwnd and seq number progression for SB′ with and without
SQR. Link failure occurs after about 2 seconds.

sender is not affected by the link failure and the TCP sequence number grows smoothly.

Recovery Time. While Figure 4.7 shows the TCP sender’s perspective, the per-

spective from a TCP receiver is different. Upon link failure, while the route is being

reconfigured, SQR holds the packet transmission thereby introducing a time small gap.

This small time gap, called the recovery time, is an unavoidable effect seen by a TCP

receiver. Figure 4.8 shows the CDF of the recovery time for over 30,000 TCP flows where

the link failure is masked in a SB′+SQR configuration. The recovery time is larger than

SB′ route failure time (760 µs) in about 90% instances for two reasons. First, SQR needs

to reorder the packets before retransmission which adds some additional recovery delay.

Second, the underlying delayed queue causes each individual packet to be delayed for a

time at least equal to the worst-case route failure time. The packets that are delayed for

longer than the actual route failure time are those that are not lost and would be de-

livered to the receiver again. Retransmitting these extra packets also contributes to the

4.4 Performance Evaluation 71

 0
 0.2
 0.4
 0.6
 0.8

 1

 650 700 750 800 850 900 950 1000 1050

760µs

C
D

F

Recovery Time (µs)

SB´+SQR

Figure 4.8: Recovery time.

 0

 200

 400

 600

30 200 400 600 800 1000

P
a
c
k
e
ts

 l
o
s
t

Route Failure Time (µs)

No failure
X+SQR w/ failure
X w/ failure

Figure 4.9: Number of packets lost for different route failure time.

additional recovery time. Note that these extra packets do not affect the TCP receiver’s

state and the resultant FCT for short flows [25]. In about 10% instances, the recovery

time was lower than 760 µs. We believe that in these instances, due to “natural” gaps

in the packet transmission, the packets arrived after a link failed and before the route

was successfully recovered, thereby getting buffered for less than 760 µs.

Packet Loss. The number of packets lost during a link failure depends on the

recovery scheme’s route failure time. A scheme with a higher route failure time would

stress SQR. Figure 4.9 shows the number of packets lost for a generic route recovery

scheme X, whose route failure time varies from 30 µs (LRR) to 1000 µs (F10 [122]).

Beyond the route failure time of 600 µs, the number of lost packets does not increase as

TCP loses almost the whole cwnd and the transmission is stalled. When X is coupled

with SQR, the packet loss remains zero even when the route failure time increases.

72 SQR

100

1000

5000

 0 20 40 60 80 100

F
C

T
 (

u
s
)

Flow Size (KBytes)

NoFailure
SB´+SQR w/ failure

Figure 4.10: FCTs of latency-sensitive web search flows [8] under link failures with
SB′+SQR as route recovery mechanism.

100

10
3

10
4

10
5

10
6

10
7

<30 KB 30-60 KB 60-100 KB

F
C

T
 (

µ
s
)

Flow Size

NoFailure
SB

SB+SQR
LRR

LRR+SQR

Figure 4.11: FCTs of failure-hit web search flows [8] compared to no failure.

4.4.3 Latency-sensitive Workloads

Next, we evaluate how effective is SQR at keeping FCTs low for latency-sensitive work-

loads under link failures. We use 1,000 different flow sizes from the web and data mining

workloads (§4.4.1) and send 30 flows of each flow size yielding a total of 30,000 flows.

The flows are sent from h2 to h4 while the link between sw6 and sw10 is brought down

every 20 ms (see Figure 4.2). The total route failure time is 30 µs for LRR and 760 µs

for SB′.

We first focus on the FCTs of flows which faced link failures i.e. we ignore the flows

that were not affected by a link failure. We showed in §4.2 that even with SB′, the FCTs

4.4 Performance Evaluation 73

0.85

0.90

0.95

1.00

 1000 10000 100000 1x10
6

C
D

F

FCT (µs)

No Failure
LRR+SQR
SB´ +SQR

LRR
SB´

(a) Data mining workload

0.85

0.90

0.95

1.00

 1000 10000 100000 1x10
6

C
D

F

FCT (µs)

No Failure
LRR+SQR
SB´ +SQR

LRR
SB´

(b) Web search workload

Figure 4.12: CDF of FCTs for two workloads under link failures.

can increase by several orders of magnitude when there are link failures (see Figure 4.3).

Figure 4.10 shows that when SB′ is coupled with SQR, the FCTs for the failure-hit flows

are only slightly higher than the FCTs of no failure flows. Figure 4.11 shows the FCTs

for failure-hit web search flows when running SB′ and LRR schemes with and without

SQR. We show the results for three different ranges of flow sizes. The vertical bars show

the minimum, median, 95th percentile, 99th percentile and the maximum values of FCT.

We observe that when coupled with SQR, the tail FCTs of failure-hit flows for both SB′

and LRR are reduced by about 3 to 4 orders of magnitude. If the packets of a flow

arrive after the link has failed and before the route is reconfigured, the recovery time

(see §4.4.2) of these packets will be less than the route failure time. Therefore, even

though SB′ has a 760 µs route failure time, the minimum and median values of FCT for

SB′+SQR are only about 200 µs higher than the no failure or LRR+SQR scenarios.

Figure 4.12 shows the FCT distribution for all the 30,000 flows involved in an exper-

iment run, including those not affected by link failures. For both the data mining and

74 SQR

 0
 10
 20
 30
 40
 50

 2 4 6 8 10

P
k
t
B

u
ff
e
r

U
s
e
 (

K
B

)
SQR Traffic (Gbits/s)

X+SQR

Figure 4.13: Steady-state packet buffer consumption (per-port).

web search workloads, the tail FCT of SB′ is slightly worse than LRR. This is because

SB′ has a longer route failure time compared to LRR. While SQR helps in cutting down

the overall tail FCT for both SB′ and LRR, its reduction in FCT for LRR is slightly

more than that for SB′. This is because although SQR prevents packet loss, it inflicts a

recovery time delay (see §4.4.2) which is higher for SB′ than that for LRR.

4.4.4 Overhead

Finally, we investigate the overheads incurred by SQR by measuring: (i) the packet

buffer consumption, (ii) the reduction in switch throughput; (iii) the additional hop

latency on the switch; and (iv) the hardware resources required when implemented on a

programmable switch.

Packet Buffer Consumption. SQR uses the switch packet buffer to cache packets

for the delay time (see §4.3.3). Since SQR uses a ring of queues, the packet buffer

consumption at any time is equal to the total number of cached packets across the

different caching queues. To measure the packet buffer consumption, we configured

SQR’s Multi-Queue Ring to use only a single queue (just for measurement). Then using

the queue depth provided by the programmable dataplane, we measured the depth of the

queue to obtain the packet buffer consumption. During steady-state (no link failure),

SQR only caches packets for the link failure detection delay. Therefore, its steady-state

packet buffer consumption depends only on the link failure detection mechanism. For

a generic route recovery scheme (which we denote with X), Figure 4.13 shows how the

4.4 Performance Evaluation 75

 9
 9.2
 9.4
 9.6
 9.8
 10

 1 2 3 4 5 6 7 8 9 10 0

T
h
ro

u
g
h
p
u
t
(G

b
it
s
/s

)

SQR Traffic (Gbits/s)

Figure 4.14: Impact of SQR processing on normal line-rate traffic.

steady-state packet buffer consumption (per-port) increases with SQR traffic volume

while using F10’s link failure detection mechanism (detection delay = 30 µs). Clearly,

the packet buffer consumption increases with increase in SQR traffic. For a 10 Gbps

link, SQR will only need to handle up to 10 Gbps traffic in the worst case, even when

there is an incast (>10 Gbps) of incoming latency-sensitive traffic. This is because SQR

protects traffic on the egress link whose rate is constrained by the link speed. Therefore,

the worst case packet buffer consumption per SQR-enabled port is given by,

Worst Case Pkt Buffer = Link Speed × Delay Time (4.1)

From equation 4.1, we would expect the worst-case steady-state buffer consumption

for a 10 Gbps port with a 30 µs failure detection delay to be 37.5 KB. This matches

our experimental results in Figure 4.13. However, when a link failure is detected, the

delay time is increased to 760 µs in case of SB′+SQR. In this instance, according to

equation 4.1, the buffer consumption for SB′+SQR would be 950 KB in the worst case.

Fortunately, the failed-state is very short-lived (and will last only until the route is

reconfigured), after which SQR returns to steady-state caching.

Impact of SQR on Normal Traffic. SQR incurs some additional egress pipeline

processing to send insufficiently delayed cached packets back to the BQE (§4.3.1). To

measure the impact of SQR’s processing (maintaining a delayed queue) on the normal

traffic, we configure SQR’s Multi-Queue Ring to contain only a single caching queue on

a port, say p1. We then start line rate TCP (10 Gbps) background traffic whose egress

76 SQR

port on the switch is also p1. The background traffic uses a queue on port p1 that is

different from the SQR’s caching queue, but has the same scheduling priority. A SQR-

enabled flow (SQR traffic) is then started on another port p2. All packets from this flow

are cached using p1’s caching queue.

Figure 4.14 shows the throughput of the line-rate background traffic for different

rates of SQR traffic. We see that even at 10 Gbps, SQR traffic will occupy only about

750 Mbps of egress processing. This means that as long as the normal traffic is less than

9.25 Gbps, it will not be impacted by the processing overhead of 10 Gbps SQR traffic.

In other words, a single 10 Gbps port can simultaneously support 9.25 Gbps of normal

traffic and egress processing of 10 Gbps SQR traffic. Given that SQR uses dynamic queue

selection (§4.3.4) to utilize only the LeastLoadedPort each time the next caching queue

in the Multi-Queue Ring is chosen, the likelihood of negatively impacting the normal

traffic is very low.

Switch Processing Latency. SQR is mostly non-intrusive to the SQR-protected

original traffic, but incurs some additional dataplane processing. To measure the latency

added by this additional processing, we send traffic from h1 to h2 along sw7 → sw4 →

sw8 (Figure 4.2). When a packet arrives at the ingress pipeline of sw7 or sw4, we add

the ingress timestamp (IngressTs) to it. The difference between the two IngressTs of

adjacent switches is the hop latency. We found that, on average SQR adds a negligible

4.3 ns of additional hop latency compared to a P4 program that does only L3 forwarding.

Hardware Resources Requirements. In Table 4.2, we compare the hardware

resources required by SQR to that required by switch.p4, which is a close-source pro-

duction P4 program that implements all the network features of a typical datacenter

ToR switch. SQR uses a relatively larger proportion of stateful ALUs for operations

such as calculating the ElapsedTime, determining the LeastLoadedPort, and compar-

ing the PktTag with the NextPktTag. SQR’s logic is achieved using exact match-action

tables which require SRAM. However, SQR’s overall resource consumption remains low.

4.5 Discussion 77

Table 4.2: Resource consumption of SQR compared to switch.p4

Resource switch.p4 SQR switch.p4 + SQR
Match Crossbar 51.56% 10.22% 61.59%
Hash Bits 32.79% 13.28% 44.75%
SRAM 29.58% 15.31% 41.35%
TCAM 32.29% 0.00% 32.29%
VLIW Actions 36.98% 6.77% 43.23%
Stateful ALUs 18.75% 15.63% 33.33%

Also, since the combined usage of all resources by switch.p4 and SQR is less than 100%,

switch.p4 can easily be enhanced by incorporating SQR.

4.5 Discussion

Hardware-assisted Link Failure Detection. High-speed network cable connectors

such as QSFP+ and QSFP28 “squelch” their data input/output lanes on detecting loss

of input/output signal levels [167]. Modern switching ASICs are able to detect such

data lane squelching and provide primitives for fast failover [139]. We investigated such

hardware-assisted link failure detection in our testbed using a Barefoot Tofino switch and

an Intel XXV4DACBL1M (QSFP28 to 4xSFP28) cable. We found the worst-case detec-

tion delay to be around 2.755 µs. This implies that, with hardware support, link failure

detection delays are even lower, and SQR’s steady-state packet buffer consumption can

be further reduced.

Alternatives to on-chip Packet Buffer. An alternative way to store cached

packets could be to leverage the relatively large (∼ 4 GB) DRAM available on the switch

CPU. However, the switch CPU’s limited bandwidth on its interface to the ASIC (PCIe

3.0 x4 [33]) and its limited processing capacity make this approach infeasible for imple-

menting SQR. This limitation is common for all switches including fixed-function [56]

or partially programmable [33]. In highly congested networks where the on-chip packet

buffer is a scarce resource, using expandable packet buffers implemented via DRAM and

78 SQR

connected directly [30, 55] or indirectly [112] to the ASIC is a better approach, since

a CPU is not required to access the DRAM. Note that SQR’s overall architecture still

remains the same even when implemented with expandable packet buffer.

Handling Traffic Surges. SQR exploits the availability of spare buffer and egress

processing from the least loaded ports dynamically. A prior measurement study has

shown that high utilization and thus congestion happens on a small number of ports

and not on all the ports of a switch at the same time [188]. Nevertheless, there remains

a small possibility that when a switch is saturated on all ports, SQR could make the con-

gestion worse by partially occupying the packet buffer. To address this, SQR implements

a backstop mechanism that can dynamically pause packet caching (within nanoseconds)

when we detect high buffer consumption, and resume only when spare buffer becomes

available. With increasing adoption of delay-based congestion control protocols in dat-

acenters [131], we expect such high buffer pressure events that can overwhelm an entire

switch’s packet buffer to be rare.

Deployability and Fault Tolerance. SQR runs independently on a singleton

switch and thus SQR-enabled switches can be deployed incrementally in a network. A

SQR-enabled switch adds link failure tolerance for each port, i.e. it can handle failures

on multiple links emanating from it. Since link failures tend to be uncorrelated [73],

a partial deployment of SQR-enabled switches can effectively bring down the impact

of link failures. SQR will also be effective against failures such as line-card or switch

failures that cause link failure detection schemes to report corresponding link failures.

One limitation is that SQR will not be able to help in the event of link failures between

the end hosts and the ToR switches due to the lack of alternative paths. Also, it is

not designed to handle packet corruption losses. For datacenter networks, since most

switches have higher availability than the links and concurrent traffic bursts on multiple

switch ports [188] and concurrent link failures are rare [73], the probability of packets

being lost due to simultaneous link and switch failures will be low.

4.6 Summary 79

Higher Link Speeds. SQR can scale to higher link speeds (25/50/100 Gbps) with

an increase in buffer consumption (see equation 4.1). For a 100 Gbps port with a 30 µs

link failure detection time, the worst-case steady-state buffer consumption is expected

to be 375 KB. However, on average, latency-sensitive short-flows only comprise about

20% of the total bytes in typical datacenter networks [8]. Therefore, even at 100%

link utilization on a 100 Gbps link, we expect SQR to handle about 20 Gbps of latency-

sensitive traffic. For this average case, the worst-case steady-state buffer consumption is

about 75 KB per port. When the link fails, the average case requirement of SB′+SQR

spikes momentarily to 1.9 MB per port. Switching ASICs supporting 100 Gbps switches

currently have around 42 MB (> 1.9 MB) of packet buffer [57]. Also, the on-chip packet

buffer size for ASICs increases with supported link speeds [179]. Therefore, SQR’s

consumption of packet buffer can be supported comfortably by modern ASICs.

4.6 Summary

Achieving low and bounded FCTs under link failures is a step towards providing SLA

guarantees on network latency in datacenter networks. We show that existing link

failure management techniques fail to keep the FCTs low, as they cannot completely

eliminate packet loss during link failures. By enabling caching of small number of recently

transmitted packets, SQR completely masks packet loss during link failures from end-

hosts. Our experiments show that SQR can reduce the tail FCT by up to 4 orders of

magnitude for latency-sensitive workloads. While caching packets on the switch is an

obvious idea, it is not straightforward to achieve and was not feasible until now. The

significant reduction in route recovery times and increase in packet buffer sizes have

made it feasible, while our design, implementation and evaluation of SQR demonstrates

that it is both effective and practical. Our work suggests that on-switch packet caching

would be a useful primitive for future switch ASICs.

Chapter 5
LinkGuardian: Masking Corruption

Packet Losses in Datacenter Networks

with Link-local Retransmission

In Chapter 4, we presented SQR which masks the impact of fail-stop link failures and

prevents them from increasing the tail FCTs. SQR, however, does not work for cor-

rupting links i.e. links with gray link failures which cause random packet losses. In this

chapter, we present LinkGuardian, an in-network retransmission scheme designed to ad-

dress the problem of increased tail FCTs due to gray link failures. Here, we first present

3 important trends and highlight why they make it important to handle gray link fail-

ures in the general context of datacenter networking (Section 5.2). We then present the

detailed system design of LinkGuardian (Section 5.3) including its deployment strategy

(Section 5.3.6) followed by results from an extensive evaluation (Section 5.4). Finally,

we discuss other related issues (Section 5.5) before concluding the chapter (Section 5.6).

82 LinkGuardian

10-8

10-6

10-4

10-2

100

 9 10 11 12 13 14 15 16 17 18

higher
baudrate

denser
modulation

Pa
ck

e
t

Lo
ss

 R
a
te

Optical Attenuation (dB)

50GBASE-SR (FEC)
25GBASE-SR

25GBASE-SR (FEC)
10GBASE-SR

Figure 5.1: Effect of optical attenuation on high speed Ethernet standards with higher
baudrates and denser modulation.

5.1 Introduction

Optical links are commonly used as switch-to-switch links in modern datacenter net-

works [192]. Unfortunately, optical links tend to be susceptible to data transmission

errors arising from external physical factors such as physical damage, bending, or con-

tamination due to airborne dirt particles [61, 192]. As a result, packet losses due to

corruption on optical links in large warehouse-scale datacenters are common. AliBaba’s

recent study of hundreds of real-world service tickets showed that about 18% of the

packet drops that caused network performance anomalies (NPAs) were due to packet

corruption [189]. Another large-scale study across 15 Microsoft datacenters consisting

of 350K optical links showed that the number of packets lost due to corruption is com-

parable to those lost due to congestion [192].

At the same time, Ethernet link speeds continue to increase, having increased from

25G [91] in 2016 to 400G [94] in recent years. This increase has been achieved through

a combination of using multiple parallel PHY lanes, higher baudrate, and denser mod-

ulation. Figure 5.1 shows the result of a measurement experiment (details in §5.2.1)

where we can see that, as the link speeds continue to increase through the use of higher

baudrate (from 10G to 25G) and denser modulation (from 25G to 50G), optical links

5.1 Introduction 83

are becoming more susceptible to optical attenuation and thus corruption packet loss.

Optical corruption can only be remedied by physically repairing the damaged links,

which can take between several hours to days [192]. During this time, the impact of

corruption can only be mitigated. The current state-of-the-art approach to mitigate

corruption packet loss is to disable the corrupting links while maintaining a certain

minimum network capacity [182, 192]. However, this approach is not sufficient, as it is

often not feasible for some corrupting links to be disabled without violating capacity

constraints. Such links will continue to cause packet drops thereby negatively impacting

both throughput and latency-sensitive flows. Data from Microsoft datacenters shows

that up to 15% of the corrupting links cannot be disabled under realistic capacity con-

straints [192].

In this paper, we apply the classical loss recovery strategy of link-local retransmission

for mitigating corruption packet loss in datacenter networks. Link-local retransmission

has been studied extensively [18, 19, 148] and deployed widely in wireless networks [1,

2, 88, 89]. It has desirable properties such as the recovery overheads are proportional

to the corruption loss rate and localized to only the corrupting link. It can achieve sub-

RTT recovery and since it is agnostic to the end-hosts, it is amenable to any transport

protocol including RDMA. Yet, despite these advantages, link-local retransmissions have

never been deployed in the context of datacenter networks to the best of our knowledge.

We suspect that this is because deploying link-local retransmission in datacenter

networks is challenging for the following reasons: first, link-local retransmission requires

packet buffering while datacenter switch buffers are generally small. The problem is

further exacerbated by high link speeds that will generally require more buffering. Sec-

ond, most flows in datacenter networks are short (see Figure 5.3), which increases the

probability of tail packet loss. Such tail losses need to be detected and recovered at mi-

crosecond scales to provide bounded tail FCT guarantees and meet the stringent Service

Level Agreements (SLAs) [51, 130, 177, 189]. Third, RDMA is being widely deployed in

84 LinkGuardian

modern datacenters [70, 80, 130, 190] which is more sensitive to packet reordering than

TCP [84]. Therefore, packet ordering needs to be preserved while performing link-local

retransmission.

In this paper, we show that, with modern programmable switches, it is now feasible to

implement link-local retransmission in datacenter networks. Our system, LinkGuardian,

can overcome the above challenges by implementing the following mechanisms: (1) a fast

and efficient (low overhead) loss detection and recovery protocol to keep the recovery

delay and thus the buffering requirement small (§5.3.1 and §5.3.4); (2) a novel mecha-

nism to detect tail packet losses quickly and efficiently using a self-replenishing queue of

“dummy packets” without the need for a timeout (§5.3.2); and (3) a “reordering buffer”

at the receiver switch to maintain packet ordering along with a PFC-based backpres-

sure mechanism to ensure that the buffer does not overflow (§5.3.3). While individually

these techniques are relatively straightforward, our key insight is that their combination

is sufficient to make link-local retransmission feasible in modern datacenter networks.

Conventional wisdom says that link-local retransmissions need to preserve packet

ordering to prevent the transport layer from triggering spurious loss recovery and re-

duction of the sending rate [8, 11, 18, 24, 190]. We will show that in the context of

datacenters, it is not always necessary to preserve packet ordering (§5.4.4). The key

insight is that most flows in datacenter networks are short [130, 153] and most flows fit

within one packet and require only 1 RTT to complete [130] (see Figure 5.3). When a

flow fits within a single packet, we do not need to worry about ordering for both TCP

and RDMA. For multi-packet TCP flows, out-of-order retransmission can still provide

significant corruption loss mitigation for TCP flows at 100G speeds even if we cannot re-

transmit within TCP’s reordering window. This is because even when a TCP flow spans

multiple packets, it lasts only a few RTTs (flows being short). This means that if there

is a corruption loss, it mostly occurs just once and thus reordering happens at most once

which has minimal impact on the FCT. To this end, we show that a non-blocking vari-

5.1 Introduction 85

ant of LinkGuardian (that implements out-of-order retransmission) not only has lower

overheads but can scale better to higher link speeds (§5.4.2). However, for multi-packet

RDMA flows, we currently still need to preserve ordering due to its go-back-N transport

recovery.

LinkGuardian is currently implemented on an Intel Tofino switch and our testbed

evaluation shows that (i) for a 100G link with a loss rate of 10-3, LinkGuardian can

reduce the loss rate by up to 6 orders of magnitude while incurring only 8% reduction

in the link’s effective link speed and requiring less than 90 KB of packet buffer; and

(ii) LinkGuardian improves the 99.9th percentile FCT for TCP and RDMA by 51x and

66x respectively by handling tail packet losses at sub-RTT timescales. Furthermore,

LinkGuardian is complementary to existing solutions for handling corrupting links. By

augmenting CorrOpt [192] with LinkGuardian, the corrupting links that cannot be dis-

abled due to network capacity constraints can run with orders of magnitude lower loss

rate without affecting application performance. By doing so, CorrOpt [192] when aug-

mented with LinkGuardian can reduce the total loss rate in a large datacenter network

by at least 4 orders of magnitude and also allow network operators to operate the net-

work at a higher average capacity, that was not previously possible. In a network’s

operation, LinkGuardian lies dormant and incurs no cost until it is activated to protect

a corrupting link.

The main drawback of our current implementation of LinkGuardian is that it uses

recirculation for packet buffering because of hardware constraints (Tofino). With more

advanced hardware like the Tofino2 [117], LinkGuardian could be realized more effi-

ciently. We provide a sketch of how this can be done (§5.5). Nevertheless, we believe

that we have made a strong case that link-local retransmission is both practical and

effective for modern datacenter networks.

86 LinkGuardian

Loss Bucket % Links
[10−8, 10−5) 47.23%
[10−5, 10−4) 18.43%
[10−4, 10−3) 21.66%

[10−3+) 12.67%
Total 100%

Figure 5.2: Distribution of corruption loss rates and time-varying corruption on a
single link as observed by Zhuo et al. [192]

5.2 The Case for Mitigating Link Corruption

The use of optical fiber links is common in datacenter networks because they can support

high data rates over longer distances (∼100 m). However, optical fiber is susceptible to

bit errors due to various physical factors. While the physical factors can be varied, a

majority of them lead to a single common symptom of optical attenuation by causing

a drop in the RX optical power at the receiving transceiver [192]. This reduced RX

optical power leads to decoding errors and thus corruption packet loss. In Figure 5.2, we

reproduce the loss rate distribution of corrupting links as observed by Zhuo et al [192].

We also note that the loss rate on a single link can vary with time.

In this section, we present measurement studies that suggest that packet corruption

cannot be ignored in datacenter networks because of (i) increasing link speeds; (ii) most

flows being short; and (iii) increasing adoption of RDMA.

5.2.1 Impact of Higher Link Speeds

Ethernet link speeds have increased by a factor of more than 10 over the past 8 years.

This increase has been achieved through a combination of 3 factors: (i) increase in the

number of parallel PHY lanes, (ii) increase in the baud rate (symbol rate), and (iii) use

5.2 The Case for Mitigating Link Corruption 87

of denser modulation that packs more bits per symbol. While adding parallel PHY lanes

does not change the fundamental characteristics of signal transmission, an increase in

the baud rate and use of denser modulation does.

To understand the impact of higher baud rates, following the methodology of Zhuo

et al. [193], we used a Variable Optical Attenuator (VOA) to add a configurable optical

attenuation on an OM4 grade fiber link. We then sent standard MTU sized packets

(1,518 B frames) through the optical link and measured the packet loss rates using four

different configurations: (1) a pair of 10GBASE-SR transceivers [64] (10.3125 GBd); (2)

a pair of 25GBASE-SR transceivers [66] that use the same modulation as 10GBASE-

SR but at a higher baud rate (25.78125 GBd); (3) the same setup as (2) but with

the optional Ethernet Reed-Solomon (RS) FEC enabled; and (4) a pair of 50GBASE-

SR transceivers [65] that use a similar baudrate as 25GBASE-SR (26.5625 GBd) but a

denser state-of-the-art PAM4 modulation along with the compulsory Ethernet RS FEC.

In Figure 5.1, we plot the packet loss rates for different levels of optical attenuation

for the four different configurations. Clearly, with higher baudrate, 25GBASE-SR is

more susceptible to optical packet corruption compared to 10GBASE-SR. Even with the

RS FEC enabled, 25GBASE-SR performs poorly compared to 10GBASE-SR and can

result in packet loss rates up to 10-3. Also, with denser modulation, 50GBASE-SR is

more susceptible to optical packet corruption compared to 25GBASE-SR (with similar

Ethernet RS FEC enabled).

5.2.2 Most flows are short flows

In Figure 5.3, we plot the flow size distribution of several industry datacenter work-

loads [8, 16, 119, 154, 166]. We see that most flows are short, even shorter than the

standard MTU sizes of 1500 B and 1024 B used by TCP and RDMA respectively. As a

result, these flows will fit within a single packet and complete within 1 RTT under normal

conditions. Except for the 2010 DCTCP web search workload [8], all other packet traces

88 LinkGuardian

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105 106 107

1024
1500

C
D

F

Message/ Flow Size (Bytes)

Meta key-value
Google search RPC

Google all RPC
Meta Hadoop

Alibaba storage
DCTCP web search

Figure 5.3: Flow size distribution of several industry datacenter workloads from 2008
to 2019 [8, 16, 119, 154, 166].

have flow sizes less than 50 KB (∼30 packets) at the 75th percentile allowing them to

complete within only a few RTTs. The key takeaway is that because the flows last only

a few RTTs, the additional 1 RTT delay incurred in end-to-end recovery of a corruption

packet loss is expensive.

5.2.3 Impact of RDMA Workloads

With the introduction of RoCEv2 [15], the use of RDMA in datacenters networks is now

becoming increasingly commonplace [70, 80, 130, 190]. Unlike traditional transport pro-

tocols, RDMA requires a lossless network fabric, which is commonly achieved through

NIC-based congestion control such as DCQCN along with Ethernet flow control to pre-

vent congestion packet loss [190]. This unfortunately makes RDMA traffic extremely

vulnerable to corruption packet loss.

To illustrate the impact of corruption loss on TCP and RDMA workload, we mea-

sure the FCT of flows with 143 bytes, the most frequent flow size in Google’s all RPC

workload [166]. We use 25G Mellanox CX5 NICs connected through a 25G network. For

TCP, RTOmin is set to 1 ms. For RoCEv2, we use a one-sided RDMA WRITE operation

using NIC-based reliable delivery (RC [145]) which we found to have a RTO of ∼5 ms.

We chose RDMA WRITE as it represents a shared memory write operation [187].

5.2 The Case for Mitigating Link Corruption 89

 0.99
 0.992
 0.994
 0.996
 0.998

 1

 10 100 1000 10000

18.1X
CD

F

Message/Flow Completion Time (µs)

DCTCP (No loss)
DCTCP (10-3 loss)

(a) DCTCP.

 0.99
 0.992
 0.994
 0.996
 0.998

 1

 10 100 1000 10000

160.8X

CD
F

Message/Flow Completion Time (µs)

RDMA_WR (No loss)
RDMA_WR (10-3 loss)

(b) RDMA WRITE.

Figure 5.4: Top 1% FCTs for 143B flows on a 25G link with and without 10-3 corruption
packet loss.

We use a Variable Optical Attenuator (VOA) to configure 2 different packet loss rates:

(i) 0 (baseline); (ii) ∼10-3. In all our experiments, there is no cross traffic and only a

single flow exists in the system at any given time. This ensures that any performance

degradation observed is solely due to corruption packet loss and not due to congestion-

induced delay or loss.

In Figure 5.4, we plot the 99th percentile FCTs for 300k trials, running over DCTCP

and RDMA. Under no loss conditions, RDMA clearly lives up to its promise by achieving

∼3x lower FCT than DCTCP at the 99.9th percentile. However, under 10-3 corruption

packet loss, the FCTs for both RDMA and DCTCP degrade sharply yielding 160.8x and

18.1x higher FCT at the 99.9th percentile, respectively. While it may appear that using

aggressive RTO can mitigate this increase in tail FCT, there are several reasons outlined

by Lim et al. [120] due to which aggressive RTO is not effective and millisecond-level

90 LinkGuardian

RTO remains to be the industry practice.

5.3 LinkGuardian

The corruption loss rates in real-world datacenters tend to be small (see Figure 5.2).

This makes is it possible for LinkGuardian to mitigate the impact of corruption packet

loss using link-local retransmission. To detect link corruption, we use a low-cost scheme

that continuously monitors all optical links in the network (see Appendix A.2). Until it

is activated, LinkGuardian lies dormant and imposes no cost on the network.

In this section, we provide an overview of LinkGuardian’s design by describing a basic

link-local retransmission (LL-ReTx) scheme, the challenges of implementing LL-ReTx at

line rates, and, finally, the key ideas that make LL-ReTx practical in the context of

datacenter networks.

Basic LL-ReTx. LinkGuardian can be modelled as a protocol running between

a “sender” switch and a “receiver” switch (see Figure 5.5). The sender adds a mono-

tonically increasing sequence number (seqNo)1 to the transmitted packets and buffers

a copy of the recently sent packets (in Tx buffer). These sequence numbers are used

by the receiver to detect corruption packet losses. When there is no packet loss (seqNo

1-2), the receiver piggybacks the cumulative ACK information on top of reverse direc-

tion traffic (Ack2). The sender then drops the buffered copies of successfully delivered

packets (seqNo 1-2). In case of a corruption packet loss (seqNo 3 in Figure 5.5), the

receiver detects the gap in the sequence number when it receives the subsequent packet

(seqNo 4). The receiver then sends a high-priority loss notification to the sender (Lost3)

and the sender will retransmit the packet with seqNo 3 with high priority. More details

on sender’s packet buffering and retransmission can be found in §A.1.2.

Challenges. While this basic LL-ReTx scheme is sufficient to achieve LL-ReTX, it
1The sequence number is added per sender-receiver link pair.

5.3 LinkGuardian 91

3

1234

1234

Loss NotificationsReTx pkts

Tx Buffer

Normal pkts Normal pkts

Sender Switch Receiver Switch

Dummy pkt M

M = Egress Mirroring

4
Rx Buffer

ACK pktM

Decreasing
Strict Priority

Decreasing
Strict Priority

5 M
Lost3

Ack2

12

3= LinkGuardian
 key idea

Figure 5.5: LinkGuardian Design Overview.

is not practical in a datacenter because of the following reasons:

1. Small buffers: Since the switches in datacenter networks have shallow buffers, the

sender needs to receive the ACKs fast enough so that it can drop the buffered packets

fast enough to keep the Tx buffer usage small. If we piggyback ACKs naively, they

could get delayed by an arbitrary amount depending on the reverse direction traffic.

2. Short flows: Since most datacenter flows are short (see Figure 5.3), mostly 1 packet,

it is not always possible to detect the loss of such packets based on the gap in the

sequence numbers. In Figure 5.5, if the packet with seqNo 5 belonging to a short flow

is lost, then the basic LL-ReTx scheme cannot detect the same until a subsequent

packet (seqNo 6) is transmitted. This can lead to high-tail FCTs.

3. RDMA flows: The use of RDMA in datacenters networks is now becoming increas-

ingly commonplace [70, 80, 130, 190]. Compared to TCP, RDMA performance is very

sensitive to packet ordering due to the lack of a “reordering window” [84]. The basic

LL-ReTx above does not preserve the original packet ordering e.g. when seqNo 3 is

lost in Figure 5.5.

LinkGuardian incorporates three key ideas to address these challenges to make LL-

ReTX practical in datacenter networks:

1. Self-replenishing queue of ACK packets (§5.3.1): LinkGuardian implements

a strictly low-priority queue with one ACK packet at the receiver switch (1 in Fig-

ure 5.5). This means that there will always be packets in the reverse direction even

when there is no reverse direction traffic to piggyback the ACKs.

92 LinkGuardian

2. Self-replenishing queue of dummy packets (§5.3.2): LinkGuardian also imple-

ments a similar strictly low-priority queue of dummy packets at the sender switch (2

in Figure 5.5). The dummy packets get sent out as soon as there is no regular traffic

to allow the receiver to quickly detect tail packet losses (e.g. seqNo 5 in Figure 5.5).

3. Reordering Buffer without Overflow (§5.3.3): To preserve packet ordering,

LinkGuardian implements a reordering buffer on the receiver (3 in Figure 5.5). A

naive design would result in buffer overflow at today’s datacenter lines rates. To

prevent this, we use a PFC-based backpressure algorithm to throttle the sender when

necessary.

Scope and assumptions. Our goal is not to completely eliminate corruption packet

loss because it is too costly to achieve such a guarantee. Instead, we focus on the more

modest goal of reducing the corruption packet loss rate to an operator-specified target

level. To achieve the target effective loss rate, LinkGuardian also handles the case that

the retransmitted copy of the packets could get lost too (§5.3.4). For the following

sections, we assume that a corrupting link corrupts packets only in one direction which

is the case with 91.8% of corrupting links in production [192]. However, we should

highlight that handling bidirectional corruption is simply a matter of running a parallel

instance of LinkGuardian in the reverse direction.

Operation modes. LinkGuardian in its default mode preserves packet ordering.

However, we also allow running LinkGuardian in a simple mode called LinkGuardianNB,

where we disable the mechanism that maintains packet ordering. Our results in §5.4.4

show that LinkGuardianNB is effective in mitigating corruption packet loss for short

TCP flows because of the small flow sizes as well as TCP’s support for reordering window

and selective recovery.

5.3 LinkGuardian 93

5.3.1 Fast ACKs for minimum Buffer Overhead

In a no loss case, based on the ACK information from the receiver switch, the sender

switch clears its buffer by dropping buffered packets that have been successfully received.

Normally, the ACK information from the receiver is piggybacked on regular packets that

are sent in the reverse direction to reduce overhead. However, by simply doing so, we

cannot ensure that the ACK information is conveyed fast enough if the traffic rate on

the link in the reverse direction is too low, or worse, if there is no traffic in the reverse

direction.

To address this problem, we introduce a novel self-replenishing ACK packet queue

that has a strictly lower priority compared to the normal packet queue at the receiver.

The ACK packet queue is initialized with a single minimum-sized explicit ACK packet

which will be sent as soon as the normal packet queue is empty. In addition, every time

this ACK packet is sent, we replenish the queue by adding a new explicit ACK packet

back to the same queue using egress mirroring. This is illustrated in Figure 5.5.

5.3.2 Tail Losses for Single-Packet Flows

Single-packet flows are relatively common [8, 16, 119, 154, 166]. Since losses are detected

at the receiver based on the gap in the sequence number, when the packet belonging to

a single-packet flow is corrupted and lost, the receiver would not detect the loss until

another packet is transmitted on the link. The most common approach to detect tail

losses is to employ retransmission timeouts. However, timeouts need to be set conserva-

tively considering worst-case delays in order to avoid spurious retransmissions [120]. To

eliminate the need for a timeout, we add another self-replenishing queue at the sender

with a single “dummy” packet. This means that the sender will always have a packet to

send even if there are no normal packets and the receiver will be able to detect the gap

in sequence numbers even when there is corruption loss of a single-packet flow.

94 LinkGuardian

Algorithm 5: De-Duplication & In-Order Recovery
Applied to: protected, protected-reTx, recirculating rx-buffered pkts

1 if pkt.seq no == ackNo then
2 forward();
3 ackNo = ackNo + 1;
4 else if pkt.seq no > ackNo then
5 mark pkt as rx buffered();
6 recirculate(); // will be subjected to the algo again
7 else if pkt.seq no < ackNo then
8 drop(); // de-duplication

5.3.3 Reordering Buffer without Overflow

To preserve packet ordering, the receiver switch will need to buffer packets whenever

there is a corrupted packet until the sender receives the loss notification and successfully

retransmits the lost packet. The receiver achieves this by first using recirculation to

buffer the subsequent packets that arrive after a packet loss is detected. Since the

packets are buffered using recirculation, they would get reordered and we need a method

to ensure that the packets are forwarded in the right order after the lost packets are

received from the sender. Furthermore, when more than 1 copy of the retransmitted

packet is received (§5.3.4), the extra copies need to be dropped (de-duplication). We

achieve these requirements by using a single state variable called ackNo which determines

the correct next packet to be forwarded ahead. Buffered packets are continuously checked

and put back into the recirculation buffer until it is their turn to be forwarded next. The

pseudo-code for this is shown in Algorithm 5.

Preventing transmission stalls. In spite of our best efforts, there is still a small

but non-zero probability that a retransmission will not be successful. Because we buffer

packets at the receiver until all corrupted packets are received, this could stall the trans-

mission indefinitely and cause the receiver recirculation buffer to overflow. To handle

this rare but potentially fatal event, we implement a timeout at the receiver. If a re-

transmission does not occur within the timeout period, the receiver ignores the lost

5.3 LinkGuardian 95

1 MTU

tflight_resume

resumeThresholdpauseThreshold

effective
link speed

traffic rate from
corrupting link

Figure 5.6: Logical view of receiver-side ingress buffer (recirculation port queue).

packet, increments the ackNo and continues with the remaining packet transmissions.

The ackNoTimeout is set to a value greater than the maximum expected delay in receiv-

ing a retransmission after a packet has been found to be lost.

5.3.3.1 PFC-based Backpressure

Once a corrupted packet is detected, the receiver switch will stop forwarding packets and

start buffering packets in its recirculation buffer. Because of the high link speed, there

is a risk that the recirculation buffer might overflow even before the sender is notified of

the packet loss and it successfully retransmits the lost packet. To avoid this problem,

we employ a PFC-based pause-resume mechanism that asserts small PFC pauses on the

TX MAC of the corrupting link on the sender switch. We pause only the normal packets

queue (see Figure 5.5) so as not to affect the retransmission of the lost packets. The

underlying principle is that we want to pause the transmission of the normal packet

queue on the sender switch just enough to keep the recirculation port queue usage on

the receiver switch to a small non-zero value which we set as 2 MTU (see Figure 5.6).

We note that there is a short delay before the PFC pause/resume mechanism takes

effect after the receiver decides to send a pause/resume signal. Let tflight resume be the

delay from when the receiver switch sends a PFC resume message to when the receiver

switch receives the first packet from a previously paused regular packet queue at the

sender. During this period, when the regular packet queue on the sender switch is

paused, the recirculation port queue will continue to drain. The resumeThreshold is

therefore set to a value such that during the tflight resume time, the queue will not be fully

96 LinkGuardian

Algorithm 6: PFC-based Backpressure
Input: curr qdepth; // recirculation port’s queue size
Initialization: curr pfc state = resume;

1 if curr qdepth ¿= pauseThreshold && curr pfc state == resume then
2 send pfc pause();
3 curr pfc state = pause;
4 else if curr qdepth ¡= resumeThreshold && curr pfc state == pause then
5 send pfc resume();
6 curr pfc state = resume;

emptied (Figure 5.6). Otherwise, the outgoing egress link at the sender will be paused

excessively. Following DCQCN’s recommendation [190], we set the pauseThreshold

by leaving 2 MTU worth of space as hysteresis. The PFC pause/resume mechanism is

described in Algorithm 6. The recirculation port’s queue size is obtained in the dataplane

on a per-packet basis. Hence, Algorithm 6 uses a flag curr pfc state to avoid sending

redundant pause/resume messages.

5.3.4 Mitigating Potential ReTx Losses

If the link corruption rate is high, it is plausible that a retransmitted packet might also

be lost. To improve the odds of a successful retransmission, the sender retransmits not

one, but multiple copies of a buffered packet. Recall that our goal is not to completely

eliminate corruption packet losses, but to reduce the loss rate to an operator-specified

target level. Hence, the number of packets that are needed to be retransmitted to achieve

this target with high probability is given by:

reTx copies = ceil

(
log10(target loss rate)
log10(actual loss rate) − 1

)
(5.1)

For example, if a maximum loss rate of ≤ 10-8 is desired by the network operator and the

loss rate on a corrupting link is 10-4, then retransmitting a single copy of the buffered

packet would suffice to reduce the effective loss rate to 10-8. For a higher loss rate such

5.3 LinkGuardian 97

as 10-3, 2 copies would be required. Note that the actual loss rate in Equation 5.1 is

measured by a low-cost control plane based scheme (details in §A.2).

5.3.5 Implementation Details

LinkGuardian is implemented on an Intel Tofino programmable switch with about 1,800

lines of P4 code and runs entirely in the dataplane. For each packet to be protected,

the sender switch adds a 3-byte LinkGuardian data header, consisting of a 16-bit seqNo

and other metadata: the seqNo era and the packet type (original or retransmitted).

To piggyback the updated latestRxSeqNo (ACK) on the reverse direction traffic, the

receiver switch adds a similar 3 byte LinkGuardian ACK header. The self-replenishing

queues of the dummy and the ACK packets are initialized by injecting a single minimum-

sized packet from the switch control plane. All the state variables are maintained on a

per-port basis using SRAM-based register memory.

Handling seqNo Wrap-around. Once LinkGuardian is activated on a link, the

link is expected to carry billions if not trillions of packets in its lifetime. Therefore, any

finite-sized seqNo would wrap around at some point. To solve the wrap-around problem,

we include an additional “era bit” along with the sequence number. The era bit toggles

between 0 and 1 each time the sequence number wraps around. If two numbers belong to

different eras, an “era correction” is performed before comparing them. Era correction

involves subtracting a constant N/2 from both the sequence numbers where N is the

sequence number range. This era correction works correctly as long as the two sequence

numbers belonging to different eras are not more than N/2 apart from each other.

Handling consecutive packet losses. The sender switch maintains a lookup

table reTxReqs which is updated by the receiver and read by the sender to decide

which packets to retransmit. When consecutive packets are lost, multiple entries in

reTxReqs need to be updated simultaneously by the loss notification packet. If reTxReqs

is implemented as a single register, such a simultaneous update is not possible due to

98 LinkGuardian

 99.9995

 99.9996

 99.9997

 99.9998

 99.9999

 100

 1 2 3 4 5 6 7

C
D

F
(%

)

Consecutive Packets Lost (1518B)

10G-SR (1% Loss)
100G-SR4 (1% Loss)

25G-SR (1% Loss)
10G-SR (5% Loss)

100G-SR4 (5% Loss)
25G-SR (5% Loss)

Figure 5.7: Distribution of consecutive packets lost.

hardware limitations. We had to implement reTxReqs across multiple 1-bit registers

(details omitted for brevity) where the number of registers required is equal to the

maximum number of consecutive packets lost. This number needs to be decided at

compile time. In Figure 5.7, we plot the distribution of the number of consecutive

packets lost that we measured by setting the VOA to induce unreasonably high loss

rates of 1% and 5%. Based on Figure 5.7, our current implementation provisions for

handling 5 consecutive packets lost using 5 1-bit registers.

To update the ackNo at the receiver when there is an ACK timeout (see §5.3.3), we

follow the methodology of TimerTasks [100] where periodic packets from the switch’s

packet generator are used for timekeeping. In our implementation, we set the rate of

these timer packets to 10 Mpps (∼1% of switch’s pipeline processing capacity).

Packet Generation. To create multiple copies of a buffered packet during retrans-

mission (in case of a high loss rate), the sender switch uses the multicast primitive.

Upon detecting a loss, the receiver switch uses ingress mirroring to generate the loss

notifications. Whenever PFC pause/resume packets need to be sent by the receiver, we

modify the timer packets and send them to the sender switch.

Non-blocking Mode. Our prototype implementation allows us to disable Link-

Guardian’s functionality of preserving the packet ordering i.e. any packet lost due to

corruption is simply retransmitted out-of-order. We call this mode of LinkGuardian’s

5.3 LinkGuardian 99

operation the non-blocking mode or LinkGuardianNB in short. LinkGuardianNB is

suitable for scenarios where a small amount of per-flow reordering does not significantly

impact application performance.

5.3.6 Repairing Corrupting Links in Practice

Recall that LinkGuardian is activated on a link only when the link is found to be cor-

rupting packets (§5.3). However, if we only enable LinkGuardian and do nothing to

repair the corrupting links, then over a long period of time (∼1-2 years) nearly every

link in a large datacenter network would be corrupting packets and would need to be

protected by LinkGuardian. This will inflict significant overhead on all the switches as

they would need to run LinkGuardian simultaneously on all the ports. Therefore, the

strategy would be to deploy LinkGuardian together with CorrOpt [192]. The combined

solution will function as follows. When a link is detected to be corrupting packets, we

will first enable LinkGuardian on the link to immediately reduce the effective loss rate

to an acceptable rate. Then we will run CorrOpt’s fast checker algorithm to check if

the link can be safely disabled and scheduled for maintenance without violating the net-

work’s capacity constraints. If the link can be safely disabled, then it would be disabled

and scheduled for maintenance. However, if the link cannot be safely disabled, then it

will continue operate with LinkGuardian enabled to ensure that there is little impact

on application performance. After maintenance, whenever a link is enabled, we will run

CorrOpt’s optimizer algorithm to see if any of the corrupting links running LinkGuardian

can be safely disabled and scheduled for repair.

By operating in this manner, both LinkGuardian and CorrOpt complement each

other – LinkGuardian reduces the impact on application performance when CorrOpt fails

to disable the links due to capacity constraints. This also allows CorrOpt to run at higher

capacity constraints as the inability to disable corrupting links (due to high capacity

constraint) no more results into high network-wide corruption losses. On the other

100 LinkGuardian

hand, CorrOpt helps to figure out which of the links currently running LinkGuardian

could be disabled safely and scheduled for repair. Note that vanilla CorrOpt disables the

corrupting links to put an immediate stop to the corruption losses. On the other hand,

the combined solution of LinkGuardian and CorrOpt disables LinkGuardian-enabled

links for maintenance purposes.

5.4 Evaluation

In this section, we present our evaluation results for LinkGuardian and LinkGuardianNB

(out-of-order recovery). In particular, we seek to answer the following questions:

1. How effective is LinkGuardian at masking the corruption packet losses? Are we able

to reduce the effective loss rate to the operator-specified target as desired? And what

is the corresponding reduction in link speed?

2. How well does LinkGuardian handle tail packet loss and improve FCTs for short and

single-packet flows?

3. How does LinkGuardian’s performance compare with Wharf [72], the state-of-art

link-local FEC solution?

4. How much buffering does LinkGuardian need and what are the associated overheads

and costs of deploying LinkGuardian?

5. When deployed in a large-scale network, how effective is LinkGuardian in reducing

the corruption packet loss and improving the overall network capacity?

Testbed Setup. We used the testbed setup shown in Figure 5.8, where sw2 and sw6

are connected by an optical fiber link that uses the OM4 grade fiber. Depending on the

experiment, all switch-to-switch and host-to-switch links are either 25G or 100G. sw2

and sw6 act as the LinkGuardian sender and receiver respectively and we restrict their

recirculation buffers to 200 KB. The link-under-test is the link between sw2 and sw6.

Unless otherwise stated, the loss is always introduced on the link-under-test using the

5.4 Evaluation 101

h7
h8

sw6

sw10

h5
h6

sw5

sw9

h3
h4

sw4

sw8

h1
h2

sw3

sw7

sw2sw1
VOAA

B

C

D

Figure 5.8: Testbed with Variable Optical Attenuator (VOA).

Breakout
Cassette

Figure 5.9: Variable Optical Attenuator (VOA) setup used in the motivation and
evaluation experiments.

VOA (Figure 5.9), and loss rates are specified considering standard MTU sized packets.

Following the methodology of RAIL [193], for 100GBASE-SR4 links, the VOA attenu-

ation is applied to 1 of the 4 lanes using a breakout cassette. We set LinkGuardian’s

target loss rate2 to 10-8 and the number of packet copies to be retransmitted is then

determined by Equation 5.1 depending on the actual loss rate. We use line-rate packet

generator traffic from sw2 to measure LinkGuardian’s effective link speed. Using the

switch control plane, we poll the port counters for ports denoted by A, B, C and D

in Figure 5.8. These counters enable us to measure the sending rate/throughput of an

endpoint sender, the actual loss rate incurred due to the VOA, and the effective loss rate

achieved by LinkGuardian. We also poll the queue occupancies on sw2 and sw6 using
2For MTU-sized packets, a loss rate of 10-8 corresponds to a bit error rate (BER) of 10-12 which is

considered a healthy/non-corrupting link [193].

102 LinkGuardian

 0
 0.2
 0.4
 0.6
 0.8

 1

 2 2.5 3 3.5 4 4.5 5 5.5 6

CD
F

ReTx Delay (µs)

25G (loss <= 10-4)
25G (10-4 < loss <= 10-3)

(a) 25G link speed

 0
 0.2
 0.4
 0.6
 0.8

 1

 2 2.5 3 3.5 4 4.5 5 5.5 6

CD
F

ReTx Delay (µs)

100G (loss <= 10-4)
100G (10-4 < loss <= 10-3)

(b) 100G link speed

Figure 5.10: Delay observed by LinkGuardian receiver switch to receive retransmission
from the time the loss was detected.

the local control plane.

The servers are equipped with Intel Xeon Silver/Gold CPUs, 128 GB memory, NVIDIA

CX6-DX NICs (25G/100G) and run Linux kernel 5.4.0-91-lowlatency on Ubuntu 20.04.3.

For our experiments, we use kernel-based DCTCP and NIC-based RoCEv2 (RDMA)

transports. For TCP, TSO, SACK, RACK-TLP and ECN (100 KB marking thresh-

old [53]) are enabled and RTOmin is set to 1 ms. The network RTT for a TCP sender

is ∼30 µs. For RoCEv2, we use a one-sided RDMA WRITE operation using NIC-based

reliable delivery (RC [145]) which we found to have a RTO of ∼1 ms.

5.4 Evaluation 103

5.4.1 Parameter Tuning

LinkGuardian has three tunable parameters: ackNoTimeout, resumeThreshold, and

pauseThreshold. In this section, we describe how we derive the appropriate values for

these parameters from system parameters.

Recall that ackNoTimeout prevents LinkGuardian from stalling in the event that

a lost packet cannot be recovered (see §5.3.3). Therefore, ackNoTimeout needs to be

set to a value larger than the expected maximum retransmission delay. To estimate the

retransmission delay, we measured the time from when the receiver switch detects packet

loss to when it successfully receives the retransmission from the sender switch. Since

high-priority queues are used for loss notification and retransmission, this retransmission

delay is a function of the switch pipeline latencies, the link speed, and the number of

retransmitted copies. If more than one copy is retransmitted, only the last copy of the

retransmitted packet will be received thereby increasing the retransmission delay in the

worst case.

In Figure 5.10, we plot the distribution of the retransmission delays for ∼1 million loss

recoveries for standard-MTU-sized (1,518 B) packets. If the ackNoTimeout is set too close

to the maximum retransmission delay, it can fire off prematurely and increment the ackNo

before a retransmission is received. Hence, we conservatively set the ackNoTimeout to

7.5 µs and 7 µs for 25G and 100G, respectively. A larger ackNoTimeout leads to a slightly

longer stall in transmission, but only in the unlikely event that the original packet and

all the retransmitted copies are lost due to corruption.

The other parameters are resumeThreshold and pauseThreshold, which are used

by the PFC-based backpressure mechanism (see §5.3.3.1). In particular, when the

recirculation buffer in the sender reaches pauseThreshold, the sender will send the

PFC pause frame; and when the buffer falls below resumeThreshold, it will send the

PFC resume frame. Since we use a fixed hysteresis of 2 MTU, the pauseThreshold is

104 LinkGuardian

 0
 0.25
 0.5

 0.75
 1

 1 1.2 1.4 1.6 1.8 2

CD
F

PFC tflight_resume Delays (µs)

100G Resume
25G Resume

Figure 5.11: tflight resume delay observed by receiver switch.

resumeThreshold + 2 MTU.

If resumeThreshold is set too small, the receiver recirculation buffer will be empty

before the sender switch successfully resumes transmissions. Hence, we set resumeThreshold

to a value that is larger than the amount of data that would drain from the buffer during

the time from when the receiver sends a PFC resume frame to when the receiver starts

receiving traffic again. We refer to this time as tflight resume. tflight resume is indepen-

dent of the corruption loss rate and depends only on the link speed and switch pipeline

latencies.

In Figure 5.11, we plot the observed tflight resume for 25G and 100G links. In our

implementation, we set resumeThreshold at 40 KB and 37 KB for 25G and 100G links

respectively. These values correspond3 to tflight resume values of 1.9 µs and 1.6 µs, re-

spectively.

5.4.2 Effective Loss Rate & Link Speed

Using the packet generator on sw2 (see Figure 5.8), we conduct a “stress test” by sending

MTU-sized packets at line rate and evaluate LinkGuardian using three representative

loss rates observed in production (see Figure 5.2): 10-5, 10-4, and 10-3. As prescribed

by Equation 5.1, LinkGuardian retransmits 1, 1, and 2 copies for each lost packet for

these loss rates, respectively. This should theoretically result in loss rates of 10-10,
3the recirculation-based buffer drains at 100G

5.4 Evaluation 105

10-11

10-10

10-9

10-8

10-7

25G

E
ff

e
ct

iv
e
 L

o
ss

R
a
te

 90
 92
 94
 96
 98

 100

10-5 10-4 10-3

25G

E
ff

e
ct

iv
e
 L

in
k

S
p
e
e
d
 (

%
)

Actual Loss Rate

100G

10-5 10-4 10-3

100G

Actual Loss Rate

LinkGuardianNB LinkGuardian

Figure 5.12: Effective loss rates achieved by LinkGuardian and the corresponding
effective link speeds.

10-8, and 10-9, respectively. In Figure 5.12, we plot the observed (effective) loss rates

achieved by LinkGuardian and the corresponding effective link speeds for 25GBASE-SR

and 100GBASE-SR4 links. We observe that, except for the 25G link with 10-3 loss rate,

the effective loss rates for both LinkGuardian and LinkGuardianNB closely match the

theoretically expected loss rates. For the 25G link at the 10-3 loss rate, our investigations

showed that the corruption losses are not independent and identically distributed (i.i.d.)

and we suspect that this is the reason why the effective loss rate deviates from the

theoretically expected loss rate of 10-9. However, it is still very close to the target loss

rate of 10-8.

For effective link speed, we see that LinkGuardianNB scales much better to higher

link speeds and higher loss rates compared to LinkGuardian while achieving similar

effective loss rates. This is because, unlike LinkGuardian, LinkGuardianNB does not

preserve packet ordering and therefore does not incur intermittent pauses in the link

transmission. Nevertheless, for a 100G link with a high loss rate of 10-3, LinkGuardian

can reduce the loss rate by up to 6 orders of magnitude while incurring only an 8%

reduction in the link’s effective link speed while preserving packet ordering.

106 LinkGuardian

5.4.3 Impact on Transport Protocols

Our high-level goal is to mask the corruption packet losses from the transport layer.

While we showed in §5.4.2 that LinkGuardian can reduce the effective loss rates, what

matters is the net impact on transport protocols. To understand the impact of Link-

Guardian, we send single flow TCP traffic from h4 to h8 using iperf with all links set

to 25G. We evaluate three different TCP variants, CUBIC, DCTCP, and BBR, as they

use congestion loss, ECN, and delay as congestion signals respectively. We also consider

BBR to be representative of delay-based transport protocols, since the implementations

for TIMELY [131] and Swift [115] were not readily available. In each experiment, we

start the setup with no corruption loss. At the 2 second mark, we introduce a loss

rate of 10-3 on the link, and approximately 5 seconds later, we enable LinkGuardian.

In Figures 5.13a, 5.13b, and 5.13c, we plot the results for CUBIC, DCTCP and BBR

respectively. The effective link speed in these figures is measured separately by sending

a line rate UDP flow under the same experiment conditions.

CUBIC & DCTCP. In Figures 5.13a and 5.13b, we see that at 10-3 corruption loss,

the throughputs for both CUBIC and DCTCP are reduced sharply once corruption losses

are introduced. Upon enabling LinkGuardian, the corruption loses are nearly eliminated

and the throughput returns to a level comparable to that before packet corruption was

introduced. We also notice that there is a build-up in the flow’s buffer at the sender

switch (shown as “qdepth”).

BBR. Since BBR is mostly agnostic to packet loss, we see in Figure 5.13c that

it suffers minimal degradation when corruption loss in introduced4. Nevertheless, it

seems that once LinkGuardian is enabled, we still see a small increase in the observed

throughput.

Overall, we can see from Figures 5.13a, 5.13b, and 5.13c that LinkGuardian’s back-
4We only ran BBR on a 10G link instead of a 25G link because BBR became CPU-limited when we

tried to run the experiment on a 25G link, and it was not able to fully saturate the link.

5.4 Evaluation 107

 24

 24.5

 25

 4
 5
 6
 7

R
at

e
(G

bp
s)

sendrate

 0
 200
 400
 600
 800

B
uf

fe
r

(K
B
) qdepth

LinkGuardian Rx buffer

 0
 30
 60

 0 2 4 6 8 10 12 14

#
.P

kt
s

Time (seconds)

End-to-End ReTx

Corruption (10-3)
starts!

effective link speed (24.6Gbps)

LinkGuardian
starts!

(a) CUBIC on a 25G link with 10-3 loss.

24

24.5

25

4
5
6
7

Ra
te

 (
G

bp
s)

sendrate

0
50

100
150

B
u�

er
 (

KB
) qdepth

LinkGuardian Rx buffer

0
30
60

0 2 4 6 8 10 12 14

#
.P

kt
s

Time (seconds)

End-to-End ReTx

DCTCP ECN Threshold (100KB)

Corruption (10-3)
starts! LinkGuardian

starts!

effective link speed (24.6Gbps)

(b) DCTCP on a 25G link with 10-3 loss.

0

5

10

Ra
te

 (
G

bp
s)

sendrate

0

50

100

150

B
u�

er
 (

KB
)

0
40
80

120

0 2 4 6 8 10 12 14

#
.P

kt
s

Time (seconds)

End-to-End ReTx

effective link rate (9.83Gbps)
Corruption (10-3)

starts! starts!
LinkGuardian

qdepth
LinkGuardian Rx buffer

(c) BBR on a 10G link with 10-3 loss.

Figure 5.13: Performance of LinkGuardian for CUBIC, DCTCP, and BBR Transport
Protocols.

108 LinkGuardian

0
5

10
15
20
25

Ra
te

 (
G

bp
s)

sendrate

0
50

100
150
200
250

B
u�

er
 (

KB
) qdepth

LinkGuardian Rx buffer

0
300
600
900

0 2 4 6 8 10 12 14

#
.P

kt
s

Time (seconds)

End-to-End ReTx

Corruption (10-3)
starts!

DCTCP ECN Threshold (100KB)

effective link speed (24.6Gbps)

LinkGuardian
starts!

Figure 5.14: DCTCP on a 25G link with 10-3 loss, with PFC-based backpressure
disabled.

pressure mechanism is effective at keeping its receiver-side buffer occupancy (labelled as

“rx buffer”) low.

Backpressure Not Considered Optional. In Figure 5.14, we plot the results

for the same experiment repeated with DCTCP, but with the PFC-based backpressure

mechanism disabled. We now see a large number of end-to-end retransmissions because

the recirculation buffer at the receiver periodically builds up and overflows. In fact,

the end-to-end packet losses observed by DCTCP after enabling LinkGuardian are so

severe that the random corruption packet losses in the period between 2 and 8 seconds

are barely visible in Figure 5.14. The throughput is also lower compared to the earlier

results shown in Figure 5.13b. In other words, the PFC-based backpressure mechanism

is critical for ensuring that buffering at the receiver switch works as intended.

5.4.4 Tail Packet Loss and Short Flows

One-packet Flows. To evaluate how effectively LinkGuardian handles tail packet

losses, we measure the FCT of 143 B DCTCP and RDMA WR flows in our testbed with

all links set to 100G while introducing a corruption loss rate of ∼10-3. 143 B is the most

frequent flow size in the Google all RPC workload [166]. It is clear from our results in

5.4 Evaluation 109

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 10 100 1000 10000

51X

C
D

F

Message/Flow Completion Time (µs)

DCTCP (No loss)
DCTCP + LinkGuardian (10-3 loss)

DCTCP + LinkGuardianNB (10-3 loss)
DCTCP (10-3 loss)

(a) DCTCP.

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 10 100 1000 10000

66X

C
D

F

Message/Flow Completion Time (µs)

RDMA_WR (No loss)
RDMA_WR + LinkGuardian (10-3 loss)

RDMA_WR + LinkGuardianNB (10-3 loss)
RDMA_WR (10-3 loss)

(b) RDMA WRITE

Figure 5.15: Top 1% FCTs for 143B flows on a 100G link.

Figure 5.15 that both LinkGuardian and LinkGuardianNB are able to mask the corrup-

tion losses so effectively that the performance at 10-3 loss rate becomes indistinguishable

from the case when the link is lossless. LinkGuardian and LinkGuardianNB achieve the

same performance since we do not need to worry about ordering in case of single packet

flows. We note that the result in Figure 5.15 is also representative of all other flow sizes

for workloads in Figure 5.3 that fit within a single packet.

Longer (multi-packet) Flows. Next, we repeat the experiment with 24,387 B-sized

flows which is the most frequent flow size in the DCTCP web search workload [8]. We

plot the results when using DCTCP, BBR and RDMA WRITE transports in Figure 5.16.

We can see that the lines for LinkGuardian and no loss mostly overlap. While BBR is

mostly agnostic to packet loss, this experiment shows that corruption packet loss does

affect the FCTs of short BBR flows and therefore mitigating corruption loss is necessary

for BBR and similar rate-based/loss-agnostic transport protocols. In Figure 5.16, we

110 LinkGuardian

 0.95
 0.96
 0.97
 0.98
 0.99

 1

 10 100 1000 10000

C
D

F

Message/Flow Completion Time (µs)

DCTCP (No loss)
DCTCP + LinkGuardian (10-3 loss)

DCTCP + LinkGuardianNB (10-3 loss)
DCTCP (10-3 loss)

(a) DCTCP

 0.95
 0.96
 0.97
 0.98
 0.99

 1

 10 100 1000 10000

C
D

F

Message/Flow Completion Time (µs)

BBR (No loss)
BBR + LinkGuardian (10-3 loss)

BBR + LinkGuardianNB (10-3 loss)
BBR (10-3 loss)

(b) BBR

 0.95
 0.96
 0.97
 0.98
 0.99

 1

 10 100 1000

C
D

F

Message/Flow Completion Time (µs)

RDMA_WR (No loss)
RDMA_WR + LinkGuardian (10-3 loss)

RDMA_WR + LinkGuardianNB (10-3 loss)
RDMA_WR (10-3 loss)

(c) RDMA WRITE

Figure 5.16: Top 5% FCTs for 24,387B flows (17 pkts) on a 100G link.

5.4 Evaluation 111

also see that for RDMA, LinkGuardianNB provides no improvement over the loss case

other than preventing RTO by handling tail packet losses. This is because RDMA’s NIC-

based reliable delivery has no reordering tolerance and LinkGuardianNB does not cause

any reordering when it recovers the tail packet loss. On the other hand, for DCTCP and

BBR, LinkGuardianNB performs nearly as well as LinkGuardian except at very high

percentiles (> 99.9th) where it performs marginally worse.

Why does LinkGuardianNB perform so well? For single-packet flows, it is

unsurprising that the transport layer performance is the same for both LinkGuardian

and LinkGuardianNB. For longer flows, we found that since TSO is enabled, packet

bursts travel at near line rate (100G) and LinkGuardianNB is not able to perform out-

of-order recovery within TCP’s reordering window of 3 packets. However, since the

flows are short, this does not significantly affect the FCT for two reasons: (i) corruption

often happens among the last 3 packets for short flows where there is no reduction in

cwnd as the TCP sender does not receive sufficient SACKed bytes (>= 3 MSS) while

LinkGuardianNB performs a sub-RTT but out-of-order recovery; and (ii) in cases when

there is cwnd reduction, since the flows are short, it does not significantly affect the FCT.

For BBR, there is no reduction in sending rate since BBR is loss-agnostic. However, BBR

still benefits from LinkGuardianNB by avoiding 1 RTT delay as well as TCP end-host

stack latencies involved in end-to-end recovery.

In summary, both LinkGuardian and LinkGuardianNB improve the 99.9th percentile

FCT for single packet DCTCP and RDMA flows by 51x and 66x respectively. For longer

flows, the 99.9th percentile gains for LinkGuardian are 19x for DCTCP and BBR, and

39x for RDMA. While LinkGuardianNB performs similar to LinkGuardian for longer

TCP flows (up to 99th percentile), it provides little benefit in case of reordering-sensitive

RDMA but does eliminate the long tail FCTs due to RTOs.

112 LinkGuardian

5.4.5 Contribution of different mechanisms

To understand the contributions of the different mechanisms implemented by Link-

Guardian, we repeat the above experiment (24,387 B) with a variant of LinkGuardian

implementing only link-local retransmission (ReTx) and then selectively enable Link-

Guardian’s packet order preserving (Order) and tail loss handling (Loss) mechanisms.

In Table 5.1, we show the top 1% FCT results for DCTCP. Simple link-local retrans-

mission improves the 99.9% FCT significantly as it recovers the loss of the 3rd last and

the 2nd last packets in the flow which would otherwise cause an RTO due to lack of

3 MSS SACKed bytes. Additionally handling packet ordering only provides marginal

gains up to 99.9%. Tail loss handling on the other hand significantly reduces FCT at

all top percentiles. Notice that the two right-most columns represent LinkGuardianNB

and LinkGuardian respectively, and the additional packet order preserving by Link-

Guardian improves the FCT by ∼33% at 99.99% and above percentiles thereby nearly

matching the performance of the no loss case. Results for BBR and RDMA (omitted for

brevity) show similar trends except that for RDMA at 99.9%, ReTx+Order shows 3.75x

improvement than ReTx since RDMA is more reordering intolerant compared to TCP.

One may erroneously conclude that tail loss handling only helps for FCTs at 99.99% and

above. However, our results in Figure 5.15 show that tail loss handling in crucial for

single-packet flows.

We note here that these performance deficits exist even though RACK-TLP is en-

abled in our experiments. While the exact reason is under investigation, we believe that

this because for very short flows RACK-TLP does not have a reliable estimate of the

network RTT.

5.4 Evaluation 113

Table 5.1: Top 1% FCT (µs) for 24,387B DCTCP flows for different LinkGuardian
mechanisms: tail loss handling (“Tail”) and preserving packet order (“Order”)

No
Loss

Loss
(10-3) ReTx ReTx

+Order
ReTx
+Tail

ReTx+Tail
+Order

99.00% 152.293 169.044 161.959 161.168 156.627 155.669
99.90% 166.877 3399.743 212.378 193.252 195.588 168.21
99.99% 197.536 4036.167 3606.115 3773.866 314.128 194.085
99.999% 253.207 4159.96 4107.404 4088.288 356.503 235.793
std dev 21.3 172.294 63.695 80.148 22.629 22.286

5.4.6 Overhead

In this section, we evaluate the overheads of deploying LinkGuardian. In particular, we

consider 4 aspects: (i) buffer usage, (ii) protocol overhead, (iii) recirculation overhead;

and (iv) dataplane resources consumed. We will show that the overheads are so low that

LinkGuardian is immediately and easily deployable on modern switches. In this section,

we present the overhead results corresponding to the “stress test” experiments in §5.4.2

where we run continuous line-rate traffic. These results, therefore, show the “worst case”

cost of running LinkGuardian as real-world link utilization exceeds 90% only about 10%

of the time [188].

Packet Buffer Usage. LinkGuardian requires packet buffer at the sender switch

(TX buffer) and additionally at the receiver switch (RX buffer) when packet ordering is

to be preserved. We used control plane APIs to measure the packet buffer usage which

we plot in Figure 5.17 for 25G and 100G links running at three different loss rates.

The key takeaway from these results is that at 25G, the TX and RX buffer usage for

LinkGuardian are at most 3.6 KB (∼2 MTU) and 60 KB respectively for all evaluated loss

rates; at 100G, the TX and RX buffer usage are both at most 90 KB. LinkGuardianNB

requires no RX buffer, while its TX buffer requirement is same as LinkGuardian at 25G

and about 3x lower (24.4 KB) at 100G. This is because LinkGuardianNB has no PFC-

based backpressure mechanism that could potentially delay the ACKs. To put these

114 LinkGuardian

 0
 20
 40
 60
 80

 100

10-5 10-4 10-3B
u
ff

e
r

S
iz

e
 (

K
B

)

Loss Rate

TX Buffer RX Buffer TX Buffer (NB)

(a) 25G link speed.

 0
 20
 40
 60
 80

 100

10-5 10-4 10-3B
u
ff

e
r

S
iz

e
 (

K
B

)

Loss Rate

TX Buffer RX Buffer TX Buffer (NB)

(b) 100G link speed.

Figure 5.17: LinkGuardian’s packet buffer usage for different link speeds and packet
loss rates. Whiskers show min, max, 25th, 50th, 75th percentiles.

Table 5.2: Recirculation overhead (% pipe forwarding capacity)
Loss Rate → 10−5 10−4 10−3

25G TX 0.45 0.449 0.444
25G RX 0.661 0.662 0.664
100G TX 0.663 0.657 0.608
100G RX 0.657 0.658 0.662

numbers in context, 100G datacenter switches have 16-42 MB of packet buffer [178].

In other words, the required buffering to deploy LinkGuardian is negligible for modern

switches.

Protocol Overhead. LinkGuardian adds a 3-byte header to each packet. A similar

3-byte ACK header is added to packets in the reverse direction when the ACK informa-

tion needs to be piggybacked. Since standard MTU-sized frame are 1,538 octets on wire,

this overhead amounts to a ∼0.2% degradation of link capacity. Note that this overhead

is incurred only when LinkGuardian is activated on a link after packet corruption is

detected. Both the dummy packets and explicit ACK packets do not add any overheads

5.4 Evaluation 115

on the link since they use strictly lower priority queues and thus are transmitted only

when there is no regular traffic.

Recirculation Overhead. In Table 5.2, we show the recirculation overhead at both

the sender and the receiver switches in terms of the percentage of the switch pipeline’s

processing capacity. LinkGuardianNB has the same recirculation overhead on the sender

switch but zero on the receiver switch. The key takeaway is that recirculation takes

up less than 1% of the switch pipeline’s processing capacity, and thus the overhead is

negligible for modern switches.

Dataplane Resources. LinkGuardian needs to maintain state in the dataplane on

a per-port basis and uses stateful ALUs (SALUs) for stateful operations. In our current

implementation, LinkGuardian requires only ∼9% of the total SRAM memory and uses

∼25% of the available SALUs. While 25% might seem high, we note that stateful ALUs

are typically not used by other switch forwarding or routing functions as those perform

stateless operations. Also, we believe that future switches are likely to incorporate more

SALUs, while LinkGuardian will be able to support higher link speeds without the need

for more SALUs.

5.4.7 Comparison with Wharf

Link-local FEC is a natural alternative to link-local retransmissions. To this end, we

want to know how LinkGuardian performs compared to Wharf [72], which to the best

of our knowledge, is the state-of-the-art link-local FEC to mitigate corruption packet

losses. We were not able to reproduce Wharf’s results experimentally because we did

not have access to the required FPGA hardware. In Table 5.3, we reproduce Wharf’s

results numerically by picking the Wharf FEC parameters that gave their best reported

goodput for each loss rate (c.f. Figure 8 in [72]). In our experiments, we used the

same experimental setup as Giesen et al.: 10G link, TCP CUBIC, Tofino-based random

packet dropping, and 4 different loss rates. Our results show that both LinkGuardian

116 LinkGuardian

Table 5.3: TCP CUBIC goodput (Gb/s) on a 10G Link
Loss Rate → 0 10−5 10−4 10−3 10−2

None 9.49 9.48 8.01 3.48 1.46
Wharf n/a 9.13 9.13 9.13 7.91
LinkGuardian 9.47 9.47 9.47 9.46 9.2
LinkGuardianNB 9.47 9.47 9.47 9.46 9.2

and LinkGuardianNB compare favorably at all loss rates. In case of LinkGuardianNB,

we observed that it was able to do out-of-order retransmission within TCP’s reordering

window for majority of times and thereby prevented the TCP sender from reducing its

cwnd below the network BDP.

5.4.8 Effectiveness in large-scale deployment

In this section, we present the results from the simulation of a large datacenter network

that runs the combined LinkGuardian + CorrOpt solution (§5.3.6). We use the same

methodology that was used to evaluate CorrOpt [192] and compare vanilla CorrOpt with

the combined solution of LinkGuardian and CorrOpt.

Simulation Setup. We contacted the authors of CorrOpt [192] for details on their

evaluation setup. However, due to confidentiality reasons, they were unable to provide

us the topology information, the link corruption traces, the simulator and the CorrOpt

algorithm’s implementation originally used in CorrOpt’s evaluation. Therefore, we im-

plemented a link corruption trace generator, an event-driven simulator, the CorrOpt

algorithm, and the combined solution of LinkGuardian and CorrOpt in about 2800 lines

of Python code. For topology, we use the state-of-the-art Facebook fabric [12] datacenter

network with about 100K switch-to-switch optical links and 1:1 oversubscription ratio5.

All switch-to-switch links are 100G and while running LinkGuardian their effective link

capacity is as per Figure 5.12. For the repair time, we use the data from CorrOpt which

suggests that 80% of the links are repaired in about 2 days while the remaining links
5supports about 500K 10G-connected or 125K 40G-connected servers

5.4 Evaluation 117

take about 4 days. Our link corruption trace generator uses the corruption loss rate

and link spatial location distribution data from Microsoft’s datacenters [192]. For the

interarrival times of the corruption events, we use a per-link Weibull distribution with a

mean-time-to-failure (MTTF) of 10K hours. The MTTF value of 10K hours is based on

the reliability study of fiber links at Facebook by Meza et al. [128] (more trace generation

details in Appendix A.3).

Evaluation Metrics. We use the same metrics as used by Zhuo et al. [192] to

evaluate CorrOpt: (i) Total penalty: sum of the loss rates for all the active corrupting

links in the network. (ii) Least paths per ToR: the fraction of paths to the spine (top)

layer of the network for the worst-case top-of-rack (ToR) switch. This metric essentially

captures the impact on per-ToR path diversity as corrupting links are disabled. However,

since enabling LinkGuardian does not disable a link, this metric does not capture the

cost of LinkGuardian which is the reduction of a link’s effective capacity. To capture

the same, we introduce an additional metric – (iii) Least capacity per pod: the total

capacity of a network pod from the ToR-layer to the spine (top) layer for the worst-case

pod in the network.

Recall from §5.3.6 that both the solutions disable the links subject to the network

capacity constraints. The network capacity constraint is specified as the minimum frac-

tion of paths that every ToR switch must have to the highest stage (spine layer) of the

network. Figures 5.18 and 5.19 show a 1-month snapshot of the simulation result ob-

tained using a 1-year long link corruption trace when the capacity constraint was 50%

and 75% respectively. We see that the combined solution of LinkGuardian and CorrOpt

reduces the total penalty by about 6 and 4 orders of magnitude for capacity constraints

of 50% and 75%, respectively. We also see that with a capacity constraint of 75% (Fig-

ure 5.19), it is not possible to disable all the corrupting links at nearly all times. This

is because in the Facebook fabric topology, the links between ToR and fabric switches

are critical and disabling a single such link leads to the ToR switch losing 25% of its

118 LinkGuardian

10-8
10-6
10-4
10-2

To
ta

l
Pe

n
a
lt

y

CorrOpt LinkGuardian + CorrOpt

 40
 50
 60
 70
 80

Le
a
st

 P
a
th

s
p

e
r

To
R

 (
%

)

 96

 97

 98

 99

 200 205 210 215 220 225 230

Le
a
st

 C
a
p
a
ci

ty
p

e
r

Po
d
 (

%
)

Time (days)

Figure 5.18: Simulation results for Facebook fabric topology (100K optical links) when
the capacity constraint is 50%.

paths to the spine layer. The resulting high total penalty by CorrOpt at all times means

that a network operator cannot possibly run the network at 75% capacity constraint

without inflicting significant corruption packet loss on application traffic. However, with

the combined LinkGuardian + CorrOpt solution, the network can be operated at 75%

capacity constraint while still maintaining orders of magnitude lower total penalty.

Notice that the least paths per ToR for both the solutions go hand-in-hand since links

are disabled in both the solutions using CorrOpt’s algorithm. The arrow in Figure 5.18

points to the instance where the combined solution’s least capacity per pod was lower

than that of vanilla CorrOpt by 0.05%. This shows the small additional cost imposed

by LinkGuardian in the form of reduction in the link’s effective capacity that leads to

reduction in the pod’s capacity.

Further, to study the benefits and costs of the combined solution over the entire

simulation period, in Figure 5.20 we show the CDFs of (a) the ratio of the total penalty

of vanilla CorrOpt to that of the combined solution; and (b) the decrease in least capacity

5.4 Evaluation 119

10-8
10-6
10-4
10-2
100

To
ta

l
Pe

n
a
lt

y

CorrOpt LinkGuardian + CorrOpt

 60

 70

 80

 90

Le
a
st

 P
a
th

s
p

e
r

To
R

 (
%

)

 94

 96

 98

 200 205 210 215 220 225 230

Le
a
st

 C
a
p
a
ci

ty
p

e
r

Po
d
 (

%
)

Time (days)

Figure 5.19: Simulation results for Facebook fabric topology (100K optical links) when
the capacity constraint is 75%.

per pod by the combined solution compared to vanilla CorrOpt. In Figure 5.20a, we

see that when the capacity constraint is 50%, for about 35% of the time, there is no

difference in the penalty ratio as all corrupting links are disabled successfully. However,

for the remaining 65% of the time and for nearly all times with 75% capacity constraint,

the combined solution offers significant benefits while causing very little reduction in the

pod’s capacity to the core (Figure 5.20b).

Overall, compared to deploying vanilla CorrOpt, the combined solution of Link-

Guardian + CorrOpt helps to keep the total penalty low when corrupting links cannot

be disabled due to high capacity constraints. This also means that a network operator

can now run the network at a higher capacity constraint which would have not been pos-

sible before. The additional cost imposed by the combined solution in terms of reduction

in network capacity is also very low.

120 LinkGuardian

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105 106

C
D

F

Total Penalty Ratio

50%
75%

(a)

 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 0 0.05 0.1 0.15 0.2 0.25

C
D

F

Decrease in Least Capacity
per Pod (normalized %)

50%
75%

(b)

Figure 5.20: For the entire simulation period of 1 year, the CDF of (a) The ratio of
total penalty of vanilla CorrOpt to that of LinkGuardian + CorrOpt; and (b) Decrease
in least capacity per pod of LinkGuardian + CorrOpt compared to vanilla CorrOpt.

5.5 Discussion and Future work

In this section, we discuss a few corner cases, address the current implementation con-

straints with next generation programmable hardware and discuss future extensions.

Implementing LinkGuardian with Tofino2. In Figure 5.10, we see that Link-

Guardian takes up to 5.25 µs to recover an MTU-sized (1,538 B on wire) packet on a

100G link. Given that it takes only about ∼123 ns to serialize 1,538 bytes on a 100G

link, this delay is surprisingly long. It turns out that this large delay is an artifact of

our current implementation on the Intel Tofino.

Since we employ recirculation to buffer copies of recently sent packets, we cannot

immediately retransmit a buffered packet as soon as a loss notification is received. In

the worst case, a packet could have to cycle through the entire recirculation loop before

it can be retransmitted. The same applies on the receiver switch. Recirculating basically

imposes an additional and somewhat random delay.

With Tofino2, we could potentially avoid both these hardware limitations and im-

plement LinkGuardian more efficiently. Tofino2 [117] offers new advanced flow control

primitives that could be used to pause/unpause as well as achieve credit-based schedul-

5.5 Discussion and Future work 121

ing of a queue entirely in the dataplane. These primitives could in theory allow us to

implement retransmission without recirculation, but this thesis remains to be validated.

Bi-directional corruption. Currently, in our prototype, we used LinkGuardian

to protect application performance from unidirectional link corruption. This suffices for

most situations since 91.8% of the corrupting links have been found to be unidirectional

in practice [192]. However, supporting bi-directional corruption is mostly a matter of

instantiating LinkGuardian parallelly in the reverse direction. One small additional

change that would be required is to increase the reliability of the control messages from

the receiver switch (loss notifications, explicit ACK packets, and the PFC pause/resume)

by sending multiple copies of them.

Handling multiple corrupting links on the same switch. An earlier study by

Zhuo et al. reported that corrupting links exhibit weak spatial correlation i.e. corrupting

links tend not to be on the same switch or topologically close [192]. Therefore, our

implementation currently assumes that we only have one corrupting link per switch

pipeline. A basic question that remains unanswered is the following: how can we use

the recirculation port to buffer packets that come from different corrupting links? Since

Tofino2 can likely implement retransmission without recirculation, Tofino2 can naturally

support multiple corrupting links.

LinkGuardian and LinkGuardianNB. Our results in Figure 5.16 and Table 5.3

suggest that LinkGuardianNB could be deployed for protecting TCP flows while a com-

plete LinkGuardian system would be required for protecting RDMA flows. Depending

on the application mix and the desired level of ordering guarantees, a network operator

could do a runtime configuration to run either LinkGuardian or LinkGuardianNB. In

fact, while currently not implemented in our prototype, it is reasonably straightforward

to allow both LinkGuardian and LinkGuardianNB to run simultaneously on a corrupting

link, each protecting a different class of traffic with different ordering guarantees.

Incremental Deployment. LinkGuardian is suitable for incremental deployment

122 LinkGuardian

as switches are upgraded over time in a network. The links that are shared between

LinkGuardian-enabled switches can then be protected by LinkGuardian if they happen

to start corrupting packets. Network operators can prioritize deploying LinkGuardian

at parts of the network topology where the capacity constraints are stringent or where

disabling the corrupting link could impact several paths in the network. That said, a

system like CorrOpt [192] would still be required as the link would need to be eventually

disabled for cleaning or repair. If deployed strategically, LinkGuardian would comple-

ment CorrOpt as it would help bring down the loss rate on the links that CorrOpt is

not able to disable (due to capacity constraints) as well as make it easier for CorrOpt

to solve the optimization problem more efficiently.

Scalability. LinkGuardian is agnostic to the overall scale of the network as it works

locally on the link between adjacent switches. The question is whether LinkGuardian

would continue to work well when link speeds continue to grow ever larger. In principle,

LinkGuardian would still work for higher link speeds of 400G and above. It might

achieve a proportionally lower effective link speed and higher buffer overhead if the

switch pipeline latency hugely dominates the retransmission delay. Based on our results

in Figure 5.12, we expect LinkGuardianNB to scale better compared to LinkGuardian.

However, we believe that with a Tofino2-based implementation and further dataplane

optimizations, LinkGuardian should still achieve good performance with low overheads.

We plan to investigate this once the hardware becomes available.

Reordering tolerance in modern transport protocols. Recently, RFC8985 [42]

has introduced a new feature called the “reordering window adaptation” in the Linux

TCP stack. Also, RoCEv2’s NIC-based reliable transport has a new “selective repeat”

feature [146] that allows more efficient selective retransmission than Go-back-N recovery.

We plan to investigate the implication of these new features for LinkGuardianNB.

5.6 Summary 123

5.6 Summary

In this chapter, we present LinkGuardian which uses link-local retransmission to mitigate

corruption packet loss in datacenter networks. While the basic idea is straightforward,

to the best of our knowledge, we are the first to validate that a combination of simple

techniques can make link-local retransmission practical in modern datacenter networks.

LinkGuardian is able to recover from tail packet losses efficiently at sub-RTT timescales,

and is, therefore, able to keep FCTs low and avoid timeouts. With a configurable target

loss rate, LinkGuardian will allow network operators to work with corrupting links with

moderate loss rates (between 10−3 and 10−5) like healthy links at a marginally reduced

link speed with little overhead. We also propose a combined solution of LinkGuardian

with CorrOpt that is able to reduce the effective loss rate throughout the network when

corrupting links cannot be disabled due to capacity constraints. It also allows network

operators to run the network at much higher capacity constraints as the impact of the

failed-to-disable corrupting links is now significantly reduced by LinkGuardian. Overall,

we believe that we have made a strong case that link-local retransmission is both practical

and effective for modern datacenter networks.

Chapter 6
Conclusion and Future Directions

With the increasing push of businesses and services to the cloud, modern datacenter

networks continue to grow both in their scale and complexity. At the same time, emer-

gence of new low-latency interactive applications such as AR/VR are making the SLA

requirements from datacenter networks even more stringent. Therefore, handling net-

work link failures as well as unexpected congestion events is crucial to ensuring that

datacenter networks are able to consistently meet such stringent SLAs. In this thesis,

we propose novel in-network techniques that mitigate the impact of network link fail-

ures on application performance and also provide high-resolution monitoring to tackle

unexpected congestion events.

In this chapter, we first discuss the future directions including recommendations

for future programmable hardware, as well as scalability and adoption issues for the

proposed solutions. We then conclude the chapter and this thesis by summarizing our

contributions in the broad context of datacenter networking and cloud infrastructure.

126 Conclusion and Future Directions

6.1 Future Directions

6.1.1 Temporal packet buffering beyond handling link failures

The key design aspect of both SQR and LinkGuardian is the temporal buffering of packet

copies of recently sent packets. Temporal buffering of packet copies is a useful building

block which can be used in applications beyond handling link failures. For example, it

could be used to protect certain highly critical packets against congestion packet loss.

A switch transmitting out a highly critical packet would make its copy and buffer the

same. If the next-hop switch transmits the packet successfully, it would inform the

previous switch that this packet was transmitted successfully and the previous switch

can then drop the buffered copy of the packet. In case the next-hop switch drops the

critical packet, it would inform the previous switch that the packet was dropped due to

congestion, and the previous switch would then retransmit the critical packet. Repeating

this scheme between every consecutive pair of switches, highly critical packets could be

protected against congestion loss in addition to link failures.

6.1.2 Better dataplane primitives for temporal packet buffering

In this thesis, we achieved the required temporal buffering for SQR and LinkGuardian

through the recirculation primitive action available in today’s dataplane programmable

switches. Recirculation, however, incurs unnecessary overhead in terms of the pipeline

processing capacity and adds latency in addition to causing reordering of packets. Order-

ing the packets back again costs additional recirculation which again adds more latency.

Newer generation programmable switches such as Tofino2 provide primitives such as

Advanced Flow Control (AFC) that allow pausing and resuming egress port queues in

the dataplane [117]. We studied AFC in details and found out that using AFC can help

to prevent reordering of the temporally buffered packets. However, it cannot completely

6.1 Future Directions 127

eliminate the need for recirculation. The crux of the issue here is that the packet buffer

memory is only available for use in the form of egress port queues. This means that

when we buffer the packets, we should already know their potential next-hop destina-

tion, which may not always be the case (e.g. the LinkGuardian receiver switch). Further,

to perform any meaningful operations on the buffered packets, these packets need to en-

ter the egress pipeline and if for some reason, they were to be buffered again or sent

out on another egress port, we need to recirculate them. Overall, what this means is

that, despite of new dataplane primitives such as AFC, there is still a need for better

dataplane primitives to support temporal packet buffering.

Based on our experience, we recommend two primitives, that if made available, could

make temporal packet buffering more efficient and eliminate the need for recirculation.

First, a primitive that allows to specify an identifier, a timeout and a timeout action for

a cloned (mirrored) copy of a recently sent packet. The timeout action could either be

drop or transmit to a specific egress port queue. Second, another primitive that allows

to specify an identifier, and an immediate action for an already buffered packet. The al-

lowed immediate actions are the same as the timeout actions. For pipelined architecture

switches, the execution for these two primitives would have to be mainly done by the

buffering and queuing engine (BQE) of a switch dataplane and the specification of the

different parameters would have to be done through the forwarding pipeline’s metadata.

The implementation feasibility of these two primitives for pipelined architecture switches

remains a matter of further investigation. However, we believe that these two primitives

are definitely feasible to achieve on non-pipelined programmable switch platforms such

as Juniper’s Trio [183].

6.1.3 Fast and Efficient Monitoring of Link Failures

In this thesis, we propose SQR and LinkGuardian to mitigate the impact of link failures

on application performance. Both SQR and LinkGuardian provide mitigation after the

128 Conclusion and Future Directions

link failure has been detected. For detecting fail-stop link failures, SQR relies on existing

methods [122, 133]. The drawback with the existing methods is that they are slow (10’s

of µs to 100’s of ms) in terms of the time they take to detect link failures. Additionally,

for detecting gray link failures, a sizeable amount of application traffic needs to suffer

corruption packet drops before the link can be designated as having a gray failure with

a certain corruption loss rate. Several existing works make an assumption that fail-stop

link failures could be detected on the orders of microseconds using network transceiver

features such as Tx/Rx Squelch [167] together with hardware support from the switch

dataplane. However, to the best of our knowledge, the Tx/Rx Squelch [167] feature of

transceivers has not been validated and there exists no study reporting its fidelity in

practice. Similarly, for detecting gray link failures, there does not exist a solution that

minimizes the impact on application traffic. Therefore, there is certainly a scope to

conduct an in-depth study of existing link failure detection techniques – both fail-stop

and gray – and subsequently develop a more efficient solution that minimizes the penalty

to the application traffic.

6.1.4 Scaling to future link speeds

Within the next decade, we expect the Ethernet link speeds of 400G and 800G (collo-

quially known as “Terabit Ethernet”) to become common place in datacenter networks.

An important question therefore is – whether the proposed in-network techniques in this

thesis would scale to these future link speeds.

BurstRadar should have no problem scaling to higher link speeds. This is because

when link speeds become higher, the dataplane pipelines also become proportionally

faster. Also, as has been the case so far, the support for egress mirroring (required

by BurstRadar for courier packets) also scales with port speeds. For similar reasons,

SQR’s main technique should also have no problem scaling to higher link speeds. The

main challenge that SQR will face in scaling to higher link speeds is in keeping its

6.1 Future Directions 129

overheads low. If future generation switches support the new primitives mentioned in

Section 6.1.2, then that would help immensely in reducing the recirculation overhead

and the accompanying latency. However, larger link speeds would also mean higher

packet buffer requirement for SQR. While faster and efficient fail-stop failure detection

techniques (Section 6.1.3) would certainly reduce the buffer requirement, we do not

expect the reduction to be significant. This means that SQR may not be practical for

switches with high-link speeds and shallow buffers. However, it is likely that SQR will

still remain practical if implemented on switches such as the Juniper Trio [183] that

offer a large extended packet buffer (on the order of a few GBs). Such extended packet

buffers are typically implemented using memory technologies such DRAM which have a

higher latency. However, since fail-stop link failures and the subsequent retransmission

by SQR is a one-off event, higher latency to access the extended packet buffer is not a

big concern for SQR.

In case of LinkGuardian, scaling to higher link speeds poses challenges both in terms

of performance as well as overheads. From Figure 5.12, we see that, for the same loss

rate, as the link speed becomes higher, the degradation in LinkGuardian’s effective link

capacity becomes larger. This is because, for higher link speeds, the pipeline latencies of

the sender and receiver LinkGuardian switches start to dominate the total retransmission

delay. Since LinkGuardian performs in-order retransmission by default, each time there

is a corruption packet loss, the transmission on the link needs to halt for the retransmis-

sion delay amount of time. As a result, we do not expect LinkGuardian’s effective link

capacity to scale very well with higher link speeds when the corruption loss rates are

high (>=10-3). However, for majority of times, real-world corruption loss rates are less

than 10-3 (see Figure 5.2). Furthermore, the new primitives mentioned in Section 6.1.2

would certainly help lower the degradation in effective link capacity of LinkGuardian

by reducing the retransmission delay. Also, based on the results in Figure 5.12, we

can expect LinkGuardian’s non-blocking mode (LinkGuardianNB) to fare well at higher

130 Conclusion and Future Directions

link speeds since it does not stall the transmission on the link. While in Figure 5.16c,

we see that LinkGuardianNB does not work well with RDMA, we expect this issue to

be resolved in the near future with later generation of RDMA NICs [144]. As for the

performance of TCP with LinkGuardianNB at higher percentiles (> 99.9th), we believe

that there is scope for performance improvements in the end-host TCP stack. Over-

all, for LinkGuardian at future link speeds, we believe that LinkGuardianNB will be a

more practical solution when performance improvements are also made at the end-point

transport stacks.

6.1.5 Adoption in practice

We believe that the research presented in this thesis is translational and can be adopted

for practical deployments. Both BurstRadar and SQR run on a singleton switch requiring

no coordination with any other switches. Therefore, these two systems are the easiest

to adopt for practical deployments. A system called DTEL [110] from Intel (previously

Barefoot Networks) implements nearly the same snapshot algorithm as BurstRadar1.

DTEL currently ships as a part of Intel’s reference switch.p4 implementation. Unlike

BurstRadar, deployment of SQR, however, is contingent on already existing support on

the switch for link failure detection and backup path selection. Deploying SQR would

therefore need more work as SQR would need to be integrated with the existing failure

detection and backup path selection mechanisms on the switch.

LinkGuardian implements a protocol between a pair of switches and is therefore not

so straightforward to deploy compared to BurstRadar or SQR. As discussed in Sec-

tion 6.1.4, the non-blocking version of LinkGuardian (LinkGuardianNB) is expected

to scale better for future link speeds. LinkGuardianNB is also much simpler in its

design and implementation. If the end-point transport’s performance issues when work-

ing with LinkGuardianNB are addressed in the future (Section 6.1.4), we can expect
1We do not claim that DTEL was inspired by BurstRadar. To the best of our knowledge, DTEL and

BurstRadar were developed independently.

6.2 Summary of Thesis Contributions 131

Performance

Availability

Manageability

Velocity

Stranding

Decreasing
Priority

Figure 6.1: Priority order for infrastructure work at Google Cloud [172]

LinkGuardianNB to have a lower resistance for adoption. Our P4 implementation for

LinkGuardianNB defines the different messages types used in the protocol between the

adjacent switches. With sufficient traction, LinkGuardianNB protocol could be for-

malized into an Internet RFC along with the P4-specified packet header formats. For

compatibility check, the protocol could include an additional handshake step where the

control plane of a switch would check for LinkGuardianNB support with its adjacent

switches. If supported, the adjacent pair of switches would setup the necessary initial

state before activating the protocol in the dataplane.

6.2 Summary of Thesis Contributions

Since the advent of datacenter networks, there has been a significant amount of work

focusing on performance [6, 8, 9, 10, 17, 76, 83, 87, 149, 173, 180] and manageabil-

ity [75, 141]. Figure 6.1 shows the priority order for infrastructure work at Google

Cloud [172]. We see that availability forms the highest priority for large cloud operators

132 Conclusion and Future Directions

without which none of the other aspects of a datacenter network can be guaranteed. In

datacenter infrastructure, there has been a long standing-tradition of building reliable

systems on top of cheaper and unreliable components in order to achieve a good cost

vs. reliability tradeoff. Examples include building large-scale storage systems on top

of inexpensive commodity disks [71]. Constant monitoring, error detection, and auto-

matic recovery are integral to such systems. In the same spirit, this thesis contributes

in-network techniques that provide monitoring, error detection and automatic recovery

for transient congestion and hardware failure events occurring at individual links in a

datacenter network. Essentially, by masking datacenter network link faults from appli-

cations’ reliability metrics such as the tail FCTs, the proposed in-network techniques

enable datacenter network operators to better handle the cost vs. reliability trade-off.

As link speeds keep increasing and the availability and performance demands of

applications also increase, network management problems (including failures) would be

required to be solved in real time [59]. Essentially, datacenter networks should become

self-driving/self-patching networks [58, 59] where network faults patch by themselves

allowing the network to run seamlessly with minimal impact on the reliability (SLAs).

This thesis therefore represents a contribution towards this vision.

Appendices

Appendix A
LinkGuardian

A.1 Protocol Details

In this Appendix, we provide some details that might be helpful for understanding our

implementation of LinkGuardian, but which are not essential for understanding the key

ideas and contributions of our work.

A.1.1 Loss Detection & Notification

In Figure A.1, we list the state variables maintained by the sender and receiver switches

and the different packets that are exchanged. The sender maintains a monotonically

increasing seqNo while the receiver records the latest received seqNo as latestRxSeqNo.

seqNo

latestRxSeqNo

latestRxSeqNo
pendingAck

reTxReqs

piggybacked normal pkts

ACK pkts

Loss Notification pkts
Loss Detection

PktGen

Sender Switch Receiver Switch

Figure A.1: State maintained by LinkGuardian switches and different types of packets
that read/update it.

136 LinkGuardian

A copy of the latestRxSeqNo is also maintained at the sender, which the receiver keeps

updating. The sender also maintains a lookup table called reTxReqs, which records the

sequence numbers of the packets for which retransmission is requested.

For each packet that is transmitted on the corrupting link (protected packet), the

sender adds the seqNo to the packet (using a custom header) and increments it by

1. The sender uses egress mirroring to also make a copy of the packet along with the

added sequence number and buffers it until the receiver notifies that the packet was

received successfully. On the receiver, when a protected packet is received, it updates

the latestRxSeqNo to the seqNo in the packet and also sets the pendingAck to 1.

pendingAck set to 1 denotes that the copy of latestRxSeqNo on the sender is yet to be

updated.

No Loss Scenario. When there are no corruption packet losses, the latestRxSeqNo

on the receiver would increase by 1, each time a protected packet is received. On

every update of the latestRxSeqNo, the receiver must update the latestRxSeqNo on

the sender as soon as possible so that the sender can drop the buffered packets that

are successfully delivered. This timely update of the latestRxSeqNo on the sender is

critical to ensure that LinkGuardian’s use of the packet buffer at the sender is kept to a

minimum.

Loss Scenario. When a protected packet(s) gets corrupted and dropped by the

receiving MAC, the receiver observes that the latestRxSeqNo is incremented by more

than 1. On noticing this, the receiver activates a LossDetection() routine. In this

routine, the receiver generates a new packet called “Loss Notification” which contains

information about the missing sequence number as well as the latestRxSeqNo. This loss

notification packet is sent to the sender through a high-priority queue (see Figure 5.5) to

ensure timely recovery. On reaching the sender, the lookup table reTxReqs (Figure A.1)

is updated with the sequence numbers of the packets that need to be retransmitted.

A.1 Protocol Details 137

recirc
buffer

seqno
<=

latest
RxSeqNo

Yes Yes

No

No

seqno
in

ReTxReq
ReTx!

Drop!

Figure A.2: Sender-side buffering and Retransmission.

A.1.2 Sender-side Buffering & Retransmission

For each packet that is sent on the corrupting link, the sender switch adds a mono-

tonically increasing seqNo and uses egress mirroring to create a copy of the packet for

buffering. The packet buffering on the sender switch is realized through recirculation.

Specifically, the buffered copy of the protected packet is sent to the recirculation port

of the switch dataplane pipeline. At the same time, as described in §A.1.1, the re-

ceiver switch keeps the latestRxSeqNo on the sender switch updated and additionally

updates the lookup table reTxReqs in case of a corruption packet loss. Each time the

buffered packet completes a recirculation loop, the sender switch applies the logic shown

in Figure A.2 to the packet’s sequence number. Essentially, if the buffered packet’s se-

quence number is less than or equal to the latestRxSeqNo, the sender switch checks the

reTxReqs lookup table to see if a retransmission is requested for that sequence number.

If so, the packet is retransmitted through a high-priority queue (see Figure 5.5) or the

packet is dropped otherwise. If a packet is retransmitted, its sequence number is cleared

in the reTxReqs table. If the buffered packet’s sequence number is greater than the

latestRxSeqNo, then we do not know yet if the packet was successfully received or not

and therefore the sender switch continues to buffer the packet through recirculation.

138 LinkGuardian

A.2 Monitoring Links for Corruption

To detect corrupting links, we implemented corruptd, a daemon which runs at the local

control plane of the programmable switches.

Detecting Corrupting Links. corruptd periodically polls the driver (in this

chapter, we configure the interval as 1 second) to extract the switch port RX statistics,

specifically, framesrxok and framesrxall. We maintain a moving window of 100M

frames to compute the link loss rates, given by L = framesrxok
framesrxall . When L ≥ 10−8

for any particular link, the upstream transmitting switch will be notified to activate

LinkGuardian.

Notification and Activation. For scalability, corruptd daemons communicate

through a publish-subscribe (PubSub) pattern using Redis. Each daemon subscribes

to link corruption notifications relating to the local switch’s links. Upon receipt of a

notification, corruptd pushes corresponding data plane match-action table entries to

activate LinkGuardian for the corrupting link depending on the target and the actual

loss rates (see Equation 5.1).

A.3 Link Corruption Trace Generation

A link corruption trace is essentially a time series of link corruption events where a link

corruption event denotes which link started to corrupt packets and at what loss rate. To

determine the time at which a link would start corrupting packets, we assume a per-link

1-parameter Weibull distribution with a constant shape parameter (β). This is because

the location parameter of the Weibull distribution (γ) is zero since it is not guaranteed

that all links in a large warehouse-scale datacenter would not start corrupting packets

during a certain initial period. Also, the shape parameter (β) is equal to 1, since the

corruption is purely caused by random external events such a connector contamination,

A.3 Link Corruption Trace Generation 139

fiber bending, etc. Therefore, the per-link Weibull PDF that determines the time until

a link’s next failure is given by

f(t) = 1
η

× e
−

(
t
η

)
(A.1)

where the parameter η is the mean-time-to-failure (MTTF) of a link. A study by Meza

et al. [128] showed that for fibers links from different vendors considered in their study,

the mean time between the link faults was at most 10,000 hours. We conservatively use

the value of 10,000 hours as the MTTF (η in Equation A.1) since Meza et al. did not

specifically consider only intra-datacenter links. What this means is that on average, it

would take 10,000 hours (or 1.15 years) for a fiber link to start corrupting packets from

the time it was last repaired.

To generate the trace, we first draw samples from the Weibull distribution indepen-

dently for each link to determine the times at which each link would start corrupting

packets. This gives us the various times of the corruption events and the link involved in

each corruption event. Then for each corruption event, we use the corruption loss rate

distribution from CorrOpt (c.f. Table 1 in [192]) to determine the loss rate. This list

of corruption events sorted by time forms the link corruption trace. We note that the

trace generated using the above methodology has a nearly random spatial distribution

of simultaneously corrupting links which matches the observation by Zhuo et al. [192] in

production datacenters.

Bibliography

[1] 3GPP. 2007. TS 36.321: E-UTRA; Medium Access Protocol Specification (Release

8). (2007).

[2] 3GPP. 2020. TS 36.321: LTE; E-UTRA; Medium Access Protocol Specification

(Release 16). (2020).

[3] Jung Ho Ahn, Nathan Binkert, Al Davis, Moray McLaren, and Robert S Schreiber.

2009. HyperX: topology, routing, and packaging of efficient large-scale networks.

In Proceedings of SC.

[4] Akamai. 2017. Akamai Online Retail Performance Report. (2017). Retrieved

2022-04-06 from https://www.akamai.com/newsroom/press-release/akamai-

releases-spring-2017-state-of-online-retail-performance-report

[5] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A scalable,

commodity data center network architecture. In Procedings of SIGCOMM.

[6] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A Scalable,

Commodity Data Center Network Architecture. In Proceedings of SIGCOMM.

[7] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Francis Matus, Rong Pan, Navindra

Yadav, George Varghese, et al. 2014. CONGA: Distributed Congestion-aware

Load Balancing for Datacenters. In Proceedings of SIGCOMM.

https://www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-state-of-online-retail-performance-report
https://www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-state-of-online-retail-performance-report

142 BIBLIOGRAPHY

[8] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.

Data Center TCP (DCTCP). In Proceedings of SIGCOMM.

[9] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vah-

dat, and Masato Yasuda. 2012. Less Is More: Trading a Little Bandwidth for

Ultra-Low Latency in the Data Center. In Proceedings of NSDI.

[10] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,

Balaji Prabhakar, and Scott Shenker. 2013. pfabric: Minimal near-optimal data-

center transport. In Proceedings of SIGCOMM.

[11] Mark Allman, Vern Paxson, and Ethan Blanton. 2009. TCP Congestion Control.

RFC 5681 (2009).

[12] Alexey Andreyev. [n. d.]. Introducing data center fabric, the next-generation Face-

book data center network. ([n. d.]). https://bit.ly/3uvNlcQ.

[13] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer Rexford,

David Walker, and David Wentzlaff. 2020. Enabling Programmable Transport

Protocols in High-SpeedNICs. In Proceedings of NSDI.

[14] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu, Hongqiang Harry Liu, Jitu

Padhye, Boon Thau Loo, and Geoff Outhred. 2018. 007: Democratically finding

the cause of packet drops. In Proceedings of NSDI.

[15] InfiniBand Trade Association et al. 2014. RoCEv2 Architecture Specification.

(2014).

[16] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.

2012. Workload analysis of a large-scale key-value store. In Proceedings of SIG-

METRICS.

[17] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang. 2015.

Information-Agnostic Flow Scheduling for Commodity Data Centers. In Proceed-

ings of NSDI.

https://bit.ly/3uvNlcQ

BIBLIOGRAPHY 143

[18] Hari Balakrishnan, Venkata N. Padmanabhan, Srinivasan Seshan, and Randy H.

Katz. 1996. A Comparison of Mechanisms for Improving TCP Performance over

Wireless Links. In Proceedings of SIGCOMM.

[19] Hari Balakrishnan, Srinivasan Seshan, Elan Amir, and Randy H. Katz. 1995. Im-

proving TCP/IP Performance over Wireless Networks. In Proceedings of MOBI-

COM.

[20] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ranganathan.

2017. Attack of the Killer Microseconds. 60, 4 (2017).

[21] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ranganathan. 2018. The

Datacenter as a Computer: Designing Warehouse-Scale Machines, Third Edition.

Vol. 13. Morgan & Claypool Publishers.

[22] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni Antichi,

Minian Yu, and Michael Mitzenmacher. 2020. PINT: Probabilistic in-band network

telemetry. In Proceedings of SIGCOMM.

[23] Theophilus Benson, Aditya Akella, and David A Maltz. 2010. Network traffic

characteristics of data centers in the wild. In Proceedings of IMC.

[24] Ethan Blanton, Mark Allman, Lili Wang, Ilpo Jarvinen, Markku Kojo, and Yoshi-

fumi Nishida. 2012. A conservative loss recovery algorithm based on selective

acknowledgment (SACK) for TCP. RFC 6675 (2012).

[25] David Borman, B Braden, Van Jacobson, and R Scheffenegger. 2014. Protection

Against Wrapped Sequences. IETF RFC 7323. (2014). https://tools.ietf.

org/html/rfc7323#section-5.

[26] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rex-

ford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al. 2014.

P4: Programming protocol-independent packet processors. SIGCOMM CCR 44,

3 (2014), 87–95.

[27] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Mar-

https://tools.ietf.org/html/rfc7323#section-5
https://tools.ietf.org/html/rfc7323#section-5

144 BIBLIOGRAPHY

tin Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding Metamor-

phosis: Fast Programmable Match-Action Processing in Hardware for SDN. In

Proceedings of SIGCOMM.

[28] Broadcom. 2010. Trident+ Buffer Size. (2010). https://goo.gl/9LUHWa

[29] Broadcom. 2013. Trident II Buffer Size. (2013). https://goo.gl/3eWY7T

[30] Broadcom. 2016. StrataDNX Qumran-AX Ethernet Switch Series. (2016). https:

//bit.ly/2K1GYYR

[31] Broadcom. 2016. Tomahawk+ Buffer Size. (2016). https://goo.gl/3eWY7T

[32] Broadcom. 2017. Tomahawk II Buffer Size. (2017). https://goo.gl/3eWY7T

[33] Broadcom. 2018. Trident 3 Ethernet Switch Series. (2018). https://bit.ly/

2HBgKut

[34] Jake Brutlag. [n. d.]. Speed Matters. ([n. d.]). http://ai.googleblog.com/2009/

06/speed-matters.html

[35] Carmelo Cascone, Davide Sanvito, Luca Pollini, Antonio Capone, and Brunilde

Sansò. 2017. Fast failure detection and recovery in SDN with stateful data plane.

International Journal of Network Management 27, 2 (2017), e1957.

[36] Cavium. 2018. XPliant Ethernet Switch Product Family. (2018). https://goo.

gl/xzfLLo

[37] Guo Chen, Yuanwei Lu, Yuan Meng, Bojie Li, Kun Tan, Dan Pei, Peng Cheng,

Layong Luo, Yongqiang Xiong, Xiaoliang Wang, et al. 2016. Fast and Cautious:

Leveraging Multi-path Diversity for Transport Loss Recovery in Data Centers. In

Proceddings of ATC.

[38] Guo Chen, Yuanwei Lu, Yuan Meng, Bojie Li, Kun Tan, Dan Pei, Peng Cheng,

Layong Larry Luo, Yongqiang Xiong, Xiaoliang Wang, et al. 2016. Fast and cau-

tious: Leveraging multi-path diversity for transport loss recovery in data centers.

In Proceedings of NSDI.

[39] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, and Ori Rot-

https://goo.gl/9LUHWa
https://goo.gl/3eWY7T
https://bit.ly/2K1GYYR
https://bit.ly/2K1GYYR
https://goo.gl/3eWY7T
https://goo.gl/3eWY7T
https://bit.ly/2HBgKut
https://bit.ly/2HBgKut
http://ai.googleblog.com/2009/06/speed-matters.html
http://ai.googleblog.com/2009/06/speed-matters.html
https://goo.gl/xzfLLo
https://goo.gl/xzfLLo

BIBLIOGRAPHY 145

tenstreich. 2018. Catching the Microburst Culprits with Snappy. In Proceedings of

the Afternoon Workshop on Self-Driving Networks.

[40] Yanpei Chen, Rean Griffith, Junda Liu, Randy H Katz, and Anthony D Joseph.

2009. Understanding TCP incast throughput collapse in datacenter networks. In

Proceedings of WREN.

[41] Peng Cheng, Fengyuan Ren, Ran Shu, and Chuang Lin. 2014. Catch the Whole Lot

in an Action: Rapid Precise Packet Loss Notification in Data Center. In Procedings

of NSDI.

[42] Yuchung Cheng, Neal Cardwell, Nandita Dukkipati, and Priyaranjan Jha. 2021.

The RACK-TLP Loss Detection Algorithm for TCP. RFC 8985 (2021).

[43] Inho Cho, Keon Jang, and Dongsu Han. 2017. Credit-Scheduled Delay-Bounded

Congestion Control for Datacenters. In Proceedings of SIGCOMM.

[44] Jerry Chu, Nandita Dukkipati, Yuchung Cheng, and Matt Mathis. 2013. Increasing

TCP’s Initial Window. IETF RFC 6928. (2013). https://tools.ietf.org/html/

rfc6928.

[45] Cisco. 2017. Monitor Microbursts on Cisco Nexus 5600 Platform and Cisco Nexus

6000 Series Switches. (2017). https://goo.gl/5Xxhpm

[46] Cisco. 2019. Configuring QoS - Catalyst 3850. (2019). https://bit.ly/2W6jOTo

[47] Benoit Claise. 2004. Cisco Systems Netflow Services Export version 9. RFC 3954

(2004). https://tools.ietf.org/html/rfc3954

[48] P4 Language Consortium. 2018. Baseline switch.p4. (2018). https://github.

com/p4lang/switch

[49] P4 Language Consortium. 2018. Portable Switch Architecture. (2018). https:

//p4.org/p4-spec/docs/PSA.html

[50] James R. Dabrowski and Ethan V. Munson. 2001. Is 100 Milliseconds Too Fast?.

In Proceedings of CHI.

[51] Jeffrey Dean and Luiz André Barroso. [n. d.]. The Tail at Scale. 56, 2 ([n. d.]).

https://tools.ietf.org/html/rfc6928
https://tools.ietf.org/html/rfc6928
https://goo.gl/5Xxhpm
https://bit.ly/2W6jOTo
https://tools.ietf.org/html/rfc3954
https://github.com/p4lang/switch
https://github.com/p4lang/switch
https://p4.org/p4-spec/docs/PSA.html
https://p4.org/p4-spec/docs/PSA.html

146 BIBLIOGRAPHY

[52] Henri Maxime Demoulin, Joshua Fried, Isaac Pedisich, Marios Kogias, Boon Thau

Loo, Linh Thi Xuan Phan, and Irene Zhang. 2021. When idling is ideal: Optimizing

tail-latency for heavy-tailed datacenter workloads with perséphone. In Proceedings

of SOSP.

[53] Linux Networking Documentation. 2022. DCTCP (DataCenter TCP). (2022).

https://www.kernel.org/doc/html/latest/networking/dctcp.html.

[54] Nandita Dukkipati and Nick McKeown. 2006. Why Flow-Completion Time Is the

Right Metric for Congestion Control. ACM SIGCOMM Computer Communication

Review 36, 1 (2006).

[55] EdgeCore Networks. 2016. AS5900-54X Spec. (2016). https://bit.ly/2VQ1RZb

[56] EdgeCore Networks. 2018. AS5812-54X Spec. (2018). https://goo.gl/ZKqF6F

[57] EdgeCore Networks. 2019. AS5816-64X Spec. (2019). https://www.edge-core.

com/productsInfo.php?cls=1&cls2=5&cls3=166&id=309

[58] Nick Feamster, Arpit Gupta, Jennifer Rexford, and Walter Willinger. 2019. NSF

workshop on measurements for self-driving networks. In Proceedings of Workshop

on Measurements for Self-Driving Networks.

[59] Nick Feamster and Jennifer Rexford. 2017. Why (and how) networks should run

themselves. arXiv preprint arXiv:1710.11583 (2017).

[60] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza

Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric

Chung, et al. 2018. Azure Accelerated Networking: SmartNICs in the Public

Cloud. In Proceedings of NSDI.

[61] Edward John Forrest Jr. 2014. How to Precision Clean All Fiber Optic Connec-

tions: A Step By Step Guide. (2014).

[62] Marco Foschiano. 2008. Cisco Systems UniDirectional Link Detection (UDLD)

Protocol. IETF RFC 5171. (2008). https://tools.ietf.org/html/rfc5171.

[63] The Linux Foundation. 2018. DPDK. (2018). http://dpdk.org/

https://www.kernel.org/doc/html/latest/networking/dctcp.html
https://bit.ly/2VQ1RZb
https://goo.gl/ZKqF6F
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=166&id=309
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=166&id=309
https://tools.ietf.org/html/rfc5171
http://dpdk.org/

BIBLIOGRAPHY 147

[64] fs.com. [n. d.]. 10GBASE-SR SFP+ optical transceiver. ([n. d.]). https://bit.

ly/3CRJMTK.

[65] fs.com. [n. d.]. 50GBASE-SR SFP56 optical transceiver. ([n. d.]). https://bit.

ly/3Pb8wuo.

[66] fs.com. [n. d.]. Edge-Core ET7302-SR compatible 25GBASE-SR optical

transceiver. ([n. d.]). https://bit.ly/3cR3jca.

[67] fs.com. 2022. QSFP28-SR4-100G Reliability MTBF Test Report. (2022).

Retrieved 2022-03-26 from https://img-en.fs.com/file/report/qsfp28-sr4-

100g-reliability-mtbf-test-report.pdf

[68] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han,

Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. 2016. Network Require-

ments for Resource Disaggregation. In Proceedings of OSDI.

[69] Peter X. Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia Rat-

nasamy, and Scott Shenker. 2015. pHost: Distributed near-Optimal Datacenter

Transport over Commodity Network Fabric. In Proceedings of CoNEXT.

[70] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi, Pengcheng Zhang, Wenwen

Peng, Bo Li, Yaohui Wu, Shaozong Liu, Lei Yan, et al. 2021. When Cloud Storage

Meets RDMA. In Proceedings of NSDI.

[71] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google file

system. In Proceedings of SOSP.

[72] Hans Giesen, Lei Shi, John Sonchack, Anirudh Chelluri, Nishanth Prabhu, Nik

Sultana, Latha Kant, Anthony J McAuley, Alexander Poylisher, André DeHon,

et al. 2018. In-network computing to the rescue of faulty links. In Proceedings of

the NetCompute Workshop.

[73] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Understanding

network failures in data centers: measurement, analysis, and implications. In Pro-

ceedings of SIGCOMM.

https://bit.ly/3CRJMTK
https://bit.ly/3CRJMTK
https://bit.ly/3Pb8wuo
https://bit.ly/3Pb8wuo
https://bit.ly/3cR3jca
https://img-en.fs.com/file/report/qsfp28-sr4-100g-reliability-mtbf-test-report.pdf
https://img-en.fs.com/file/report/qsfp28-sr4-100g-reliability-mtbf-test-report.pdf

148 BIBLIOGRAPHY

[74] Prateesh Goyal, Preey Shah, Kevin Zhao, Georgios Nikolaidis, Mohammad Al-

izadeh, and Thomas E. Anderson. 2022. Backpressure Flow Control. In Proceedings

of NSDI.

[75] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,

Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta

Sengupta. 2009. VL2: A Scalable and Flexible Data Center Network. In Proceed-

ings of SIGCOMM.

[76] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert N. M. Watson,

Andrew W. Moore, Steven Hand, and Jon Crowcroft. 2015. Queues Don’t Matter

When You Can JUMP Them!. In Proceedings of SIGCOMM.

[77] P4.org Applications Working Group. 2018. In-band Network Telemetry (INT)

Dataplane Specification v1.0. (2018). https://goo.gl/HtPE9K

[78] QSFP-DD MSA Group. 2022. QSFP-DD/QSFP-DD800/QSFP112 Hardware

Specification. (2022). Retrieved 2022-03-24 from http://www.qsfp-dd.com/wp-

content/uploads/2022/03/QSFP-DD-Hardware-Rev6.2.pdf

[79] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi,

Chen Tian, Yongguang Zhang, and Songwu Lu. 2009. BCube: a High Performance,

Server-centric Network Architecture for Modular Data Centers. In Proceedings of

SIGCOMM.

[80] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Pad-

hye, and Marina Lipshteyn. 2016. RDMA over commodity ethernet at scale. In

Proceedings of SIGCOMM.

[81] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, and Songwu

Lu. 2008. DCell: a Scalable and Fault-tolerant Network structure for Data Centers.

In Procedings of SIGCOMM.

[82] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Mazières, and

https://goo.gl/HtPE9K
http://www.qsfp-dd.com/wp-content/uploads/2022/03/QSFP-DD-Hardware-Rev6.2.pdf
http://www.qsfp-dd.com/wp-content/uploads/2022/03/QSFP-DD-Hardware-Rev6.2.pdf

BIBLIOGRAPHY 149

Nick McKeown. 2014. I Know What Your Packet Did Last Hop: Using Packet

Histories to Troubleshoot Networks.. In Proceedings of NSDI.

[83] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W.

Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-Architecting Datacenter

Networks and Stacks for Low Latency and High Performance. In Proceedings of

SIGCOMM.

[84] Torsten Hoefler, Duncan Roweth, Keith Underwood, Bob Alverson, Mark Gris-

wold, Vahid Tabatabaee, Mohan Kalkunte, Surendra Anubolu, Siyan Shen, Ab-

dul Kabbani, Moray McLaren, and Steve Scott. 2023. Datacenter Ethernet and

RDMA: Issues at Hyperscale. arXiv preprint arXiv:2302.03337 (2023).

[85] Todd Hoff. [n. d.]. Latency Is Everywhere and It Costs You Sales - How to Crush It.

([n. d.]). http://highscalability.com/latency-everywhere-and-it-costs-

you-sales-how-crush-it

[86] Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki, Alberto Dainotti,

Stefano Vissicchio, and Laurent Vanbever. 2019. Blink: Fast Connectivity Recov-

ery Entirely in the Data Plane. In Proceedings of NSDI.

[87] Chi-Yao Hong, Matthew Caesar, and P. Brighten Godfrey. 2012. Finishing Flows

Quickly with Preemptive Scheduling. In Proceedings of SIGCOMM.

[88] IEEE. 2009. 802.11n-2009 Standard. (2009). https://standards.ieee.org/

ieee/802.11n/3952/.

[89] IEEE. 2013. 802.11ac-2013 Standard. (2013). https://ieeexplore.ieee.org/

document/6687187.

[90] IEEE. 2015. IEEE Standard for Ethernet - Amendment 3: Physical Layer Speci-

fications and Management Parameters for 40 Gb/s and 100 Gb/s Operation over

Fiber Optic Cables. IEEE Std 802.3bm-2015 (Amendment to IEEE Std 802.3-2012

as amended by IEEE Std 802.3bk-2013 and IEEE Std 802.3bj-2014) (2015).

[91] IEEE. 2016. IEEE Standard for Ethernet – Amendment 2: Media Access Control

http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
https://standards.ieee.org/ieee/802.11n/3952/
https://standards.ieee.org/ieee/802.11n/3952/
https://ieeexplore.ieee.org/document/6687187
https://ieeexplore.ieee.org/document/6687187

150 BIBLIOGRAPHY

Parameters, Physical Layers, and Management Parameters for 25 Gb/s Operation

Amendment 2: Media Access Control Parameters, Physical Layers, and Manage-

ment Parameters for 25 Gb/s Operation. IEEE Std 802.3by-2016 (Amendment to

IEEE Std 802.3-2015 as amended by IEEE Std 802.3bw-2015) (2016).

[92] IEEE. 2017. IEEE Standard for Ethernet - Amendment 10: Media Access Con-

trol Parameters, Physical Layers, and Management Parameters for 200 Gb/s and

400 Gb/s Operation. IEEE Std 802.3bs-2017 (Amendment to IEEE 802.3-2015

as amended by IEEE’s 802.3bw-2015, 802.3by-2016, 802.3bq-2016, 802.3bp-2016,

802.3br-2016, 802.3bn-2016, 802.3bz-2016, 802.3bu-2016, 802.3bv-2017, and IEEE

802.3-2015/Cor1-2017) (2017).

[93] IEEE. 2019. IEEE Standard for Ethernet - Amendment 3: Media Access Control

Parameters for 50 Gb/s and Physical Layers and Management Parameters for 50

Gb/s, 100 Gb/s, and 200 Gb/s Operation. IEEE Std 802.3cd-2018 (Amendment

to IEEE Std 802.3-2018 as amended by IEEE Std 802.3cb-2018 and IEEE Std

802.3bt-2018) (2019).

[94] IEEE. 2020. IEEE Standard for Ethernet – Amendment 7: Physical Layer and

Management Parameters for 400 Gb/s over Multimode Fiber. IEEE Std 802.3cm-

2020 (Amendment to IEEE Std 802.3-2018 as amended by IEEE Std 802.3cb-2018,

IEEE Std 802.3bt-2018, IEEE Std 802.3cd-2018, IEEE Std 802.3cn-2019, IEEE

Std 802.3cg-2019, and IEEE Std 802.3cq-2020) (2020).

[95] Intel. 2018. FlexPipe. (2018). https://goo.gl/PzPudG

[96] Virajith Jalaparti, Peter Bodik, Srikanth Kandula, Ishai Menache, Mikhail Ry-

balkin, and Chenyu Yan. 2013. Speeding up Distributed Request-Response Work-

flows. In Proceedings of SIGCOMM.

[97] Keon Jang, Justine Sherry, Hitesh Ballani, and Toby Moncaster. 2015. Silo: Pre-

dictable message latency in the cloud. In Proceedings of SIGCOMM.

[98] Vimalkumar Jeyakumar, Mohammad Alizadeh, Yilong Geng, Changhoon Kim,

https://goo.gl/PzPudG

BIBLIOGRAPHY 151

and David Mazières. 2014. Millions of little minions: Using packets for low latency

network programming and visibility. In Proceedings of SIGCOMM.

[99] Raj Joshi, Qi Guo, Nishant Budhdev, Ayush Mishra, Mun Choon Chan, and Ben

Leong. 2022. LinkGuardian: Mitigating the impact of packet corruption loss with

link-local retransmission. In Proceedings of APNet.

[100] Raj Joshi, Ben Leong, and Mun Choon Chan. 2019. Timertasks: Towards

time-driven execution in programmable dataplanes. In Proceedings of SIGCOMM

(Posters and Demos).

[101] Glenn Judd. 2015. Attaining the Promise and Avoiding the Pitfalls of TCP in the

Datacenter. In Proceedings of NSDI.

[102] Juniper Networks. 2016. Network Analytics Overview. (2016). https://goo.gl/

TbNwSC

[103] Zaid Ali Kahn. 2016. Project Falco: Decoupling Switching Hardware and Software.

(2016). https://goo.gl/U7PUQZ

[104] Srikanth Kandula, Dina Katabi, Shantanu Sinha, and Arthur Berger. 2007. Dy-

namic Load Balancing Without Packet Reordering. SIGCOMM CCR 37, 2 (2007),

51–62.

[105] Pravein Govindan Kannan, Nishant Budhdev, Raj Joshi, and Mun Choon Chan.

2021. Debugging Transient Faults in Data Centers using Synchronized Network-

wide Packet Histories. In Proceedings of NSDI.

[106] Pravein Govindan Kannan, Raj Joshi, and Mun Choon Chan. 2019. Precise Time-

synchronization in the Data-Plane using Programmable Switching ASICs. In Pro-

ceedings of SOSR.

[107] Rishi Kapoor, Alex C Snoeren, Geoffrey M Voelker, and George Porter. 2013. Bul-

let trains: a study of NIC burst behavior at microsecond timescales. In Proceedings

of CoNext.

[108] Dina Katabi, Mark Handley, and Charlie Rohrs. 2002. Congestion Control for High

https://goo.gl/TbNwSC
https://goo.gl/TbNwSC
https://goo.gl/U7PUQZ

152 BIBLIOGRAPHY

Bandwidth-Delay Product Networks. ACM SIGCOMM Computer Communication

Review 32, 4 (2002).

[109] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer

Rexford. 2016. Hula: Scalable load balancing using programmable data planes. In

Proceedings of SOSR.

[110] Changhoon Kim and Roberto Mari. 2018. Advanced Dataplane Telemetry.

(2018). = https://opennetworking.org/wp-content/uploads/2018/12/Data-Plane-

Telemetry-ONF-Connect-Public.pdf,.

[111] Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait Dixit,

and Lawrence J Wobker. 2015. In-band network telemetry via programmable

dataplanes. In Proceedings of SIGCOMM (Poster).

[112] Daehyeok Kim, Yibo Zhu, Changhoon Kim, Jeongkeun Lee, and Srinivasan Se-

shan. 2018. Generic External Memory for Switch Data Planes. In Proceedings of

HotNets.

[113] Ron Kohavi and Roger Longbotham. [n. d.]. Online Experiments: Lessons Learned.

40, 9 ([n. d.]). http://ieeexplore.ieee.org/document/4302627/

[114] Ron Kohavi, Roger Longbotham, Dan Sommerfield, and Randal M. Henne. [n. d.].

Controlled Experiments on the Web: Survey and Practical Guide. 18, 1 ([n. d.]).

[115] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan MG Wassel, Xian

Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld,

Michael Ryan, et al. 2020. Swift: Delay is simple and effective for congestion

control in the datacenter. In Proceedings of SIGCOMM.

[116] Karthik Lakshminarayanan, Matthew Caesar, Murali Rangan, Tom Anderson,

Scott Shenker, and Ion Stoica. 2007. Achieving convergence-free routing using

failure-carrying packets. In Proceedings of SIGCOMM.

[117] Jeongkeun Lee. 2020. Advanced Congestion & Flow Control with Programmable

Switches. In P4 Expert Roundtable Series. https://bit.ly/3J8x7fw

=
http://ieeexplore.ieee.org/document/4302627/
https://bit.ly/3J8x7fw

BIBLIOGRAPHY 153

[118] Jialin Li, Naveen Kr Sharma, Dan RK Ports, and Steven D Gribble. 2014. Tales of

the tail: Hardware, OS, and application-level sources of tail latency. In Proceedings

of SoCC.

[119] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,

Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan Yu. 2019.

HPCC: High Precision Congestion Control. In Proceedings of SIGCOMM.

[120] Hwijoon Lim, Wei Bai, Yibo Zhu, Youngmok Jung, and Dongsu Han. 2021. To-

wards timeout-less transport in commodity datacenter networks. In Proceedings

EuroSys.

[121] Junda Liu, Aurojit Panda, Ankit Singla, Brighten Godfrey, Michael Schapira,

and Scott Shenker. 2013. Ensuring Connectivity via Data Plane Mechanisms. In

Proceedings of NSDI.

[122] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas E Anderson.

2013. F10: A Fault-Tolerant Engineered Network.. In Procedings of NSDI.

[123] Suksant Sae Lor, Raul Landa, and Miguel Rio. 2010. Packet Re-cycling: Elimi-

nating Packet Losses due to Network Failures. In Proceedings of HotNets.

[124] Markets and Markets. 2021. Cloud Computing Market Forecast. (2021).

Retrieved 2022-03-24 from https://www.marketsandmarkets.com/Market-

Reports/cloud-computing-market-234.html

[125] Richard Martin. 2007. Wall Street’s Quest To Process Data At The Speed Of

Light. Information Week. (2007).

[126] Sarah McClure, Amy Ousterhout, Scott Shenker, and Sylvia Ratnasamy. 2022. Ef-

ficient scheduling policies for {Microsecond-Scale} tasks. In Proceedings of NSDI.

[127] Justin Meza, Tianyin Xu, Kaushik Veeraraghavan, and Onu Mutlu. 2018. A Large

Scale Study of Data Center Network Reliability. In IMC.

[128] Justin Meza, Tianyin Xu, Kaushik Veeraraghavan, and Onur Mutlu. 2018. A Large

https://www.marketsandmarkets.com/Market-Reports/cloud-computing-market-234.html
https://www.marketsandmarkets.com/Market-Reports/cloud-computing-market-234.html

154 BIBLIOGRAPHY

Scale Study of Data Center Network Reliability. In Proceedings of the Internet

Measurement Conference.

[129] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.

SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switch-

ing ASICs. In Proceedings of SIGCOMM.

[130] Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shujun Zhuang, Bo Li, Shuguang

Cheng, Jiaqi Gao, Yan Zhuang, Pengcheng Zhang, et al. 2022. From luna to solar:

the evolutions of the compute-to-storage networks in Alibaba cloud. In Proceedings

of SIGCOMM.

[131] Radhika Mittal, Nandita Dukkipati, Emily Blem, Hassan Wassel, Monia Ghobadi,

Amin Vahdat, Yaogong Wang, David Wetherall, David Zats, et al. 2015. TIMELY:

RTT-based Congestion Control for the Datacenter. In Proceedings of SIGCOMM.

[132] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi, Arvind Krishna-

murthy, Sylvia Ratnasamy, and Scott Shenker. 2018. Revisiting Network Support

for RDMA. In Proceedings of SIGCOMM.

[133] Edgar Costa Molero, Stefano Vissicchio, and Laurent Vanbever. 2022. FAst In-

Network GraY Failure Detection for ISPs. In Proceedings of SIGCOMM.

[134] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. 2018.

Homa: A Receiver-Driven Low-Latency Transport Protocol Using Network Prior-

ities. In Proceedings of SIGCOMM.

[135] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. 2016. Trum-

pet: Timely and precise triggers in data centers. In Proceedings of SIGCOMM.

[136] Ali Munir, Ghufran Baig, Syed M Irteza, Ihsan A Qazi, Alex X Liu, and Fahad R

Dogar. 2015. Friends, not foes: synthesizing existing transport strategies for data

center networks. In Proceedings of SIGCOMM.

[137] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat

Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. 2017.

BIBLIOGRAPHY 155

Language-directed hardware design for network performance monitoring. In Pro-

ceedings of SIGCOMM.

[138] Arista Networks. 2015. Latency Analyzer (LANZ) Architectures and Configura-

tion. (2015). https://goo.gl/LrRNi4

[139] Barefoot Networks. 2018. Tofino. (2018). https://goo.gl/cdEK1E

[140] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson Huang,

Pardis Miri, Sivasankar Radhakrishnan, Vikram Subramanya, and Amin Vahdat.

2009. Portland: a scalable fault-tolerant layer 2 data center network fabric. In

Procedings of SIGCOMM.

[141] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson Huang,

Pardis Miri, Sivasankar Radhakrishnan, Vikram Subramanya, and Amin Vahdat.

2009. PortLand: A Scalable Fault-Tolerant Layer 2 Data Center Network Fabric.

In Proceedings of SIGCOMM.

[142] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,

Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,

Tony Tung, and Venkateshwaran Venkataramani. 2013. Scaling Memcache at

Facebook. In Proceedings of NSDI.

[143] Ntop. 2018. n2disk. (2018). https://goo.gl/7DFkSp

[144] NVIDIA. 2022. Mellanox Connect X-6. (2022). https://www.nvidia.com/en-

sg/networking/ethernet/connectx-6.

[145] NVIDIA. 2022. RDMA Transport Modes. (2022). https://docs.nvidia.com/

networking/display/RDMAAwareProgrammingv17/Transport+Modes.

[146] NVIDIA. 2022. RoCE Selective Repeat. (2022). https://docs.nvidia.com/

networking/m/view-rendered-page.action?abstractPageId=25137694.

[147] Ping Pan, George Swallow, and Alia Atlas. 2005. Fast reroute extensions to RSVP-

TE for LSP tunnels. IETF RFC 4090. (2005). https://tools.ietf.org/html/

rfc4090.

https://goo.gl/LrRNi4
https://goo.gl/cdEK1E
https://goo.gl/7DFkSp
https://www.nvidia.com/en-sg/networking/ethernet/connectx-6
https://www.nvidia.com/en-sg/networking/ethernet/connectx-6
https://docs.nvidia.com/networking/display/RDMAAwareProgrammingv17/Transport+Modes
https://docs.nvidia.com/networking/display/RDMAAwareProgrammingv17/Transport+Modes
https://docs.nvidia.com/networking/m/view-rendered-page.action?abstractPageId=25137694
https://docs.nvidia.com/networking/m/view-rendered-page.action?abstractPageId=25137694
https://tools.ietf.org/html/rfc4090
https://tools.ietf.org/html/rfc4090

156 BIBLIOGRAPHY

[148] Christina Parsa and JJ Garcia-Luna-Aceves. 1999. TULIP: A Link-Level Protocol

for Improving TCP over Wireless Links. In Proceedings of WCNC.

[149] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans

Fugal. 2014. Fastpass: A Centralized ”Zero-Queue” Datacenter Network. In Pro-

ceedings of SIGCOMM.

[150] Peter Phaal. 2004. sFlow. (2004). http://sflow.org/sflow

[151] Amar Phanishayee, Elie Krevat, Vijay Vasudevan, David G Andersen, Gregory R

Ganger, Garth A Gibson, and Srinivasan Seshan. 2008. Measurement and Analysis

of TCP Throughput Collapse in Cluster-based Storage Systems. In Proceedings of

FAST.

[152] Ting Qu, Raj Joshi, Mun Choon Chan, Ben Leong, Deke Guo, and Zhong Liu.

2019. SQR: In-network packet loss recovery from link failures for highly reliable

datacenter networks. In Proceedings of ICNP.

[153] Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen Yin, Qiaobin Fu, Gautam

Kumar, Masoud Moshref, Junhua Yan, Van Jacobson, David Wetherall, and Abdul

Kabbani. 2022. PLB: Congestion Signals Are Simple and Effective for Network

Load Balancing. In Proceedings of SIGCOMM.

[154] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren.

2015. Inside the social network’s datacenter network. In Proceedings of SIG-

COMM.

[155] Stephen M Rumble, Diego Ongaro, Ryan Stutsman, Mendel Rosenblum, and

John K Ousterhout. 2011. It’s Time for Low Latency. In Proceedings of HotOS.

[156] Matt Sargent, Mark Allman, and Vern Paxson. 2011. Computing TCP’s Re-

transmission Timer. IETF RFC 6298. (2011). https://tools.ietf.org/html/

rfc6298.

[157] Eric Schurman and Jake Brutlag. 2009. The User and Business Impact of Server

Delays, Additional Bytes, and Http Chunking in Web Search. (2009).

http://sflow.org/sflow
https://tools.ietf.org/html/rfc6298
https://tools.ietf.org/html/rfc6298

BIBLIOGRAPHY 157

[158] Roshan Sedar, Michael Borokhovich, Marco Chiesa, Gianni Antichi, and Stefan

Schmid. 2018. Supporting Emerging Applications With Low-Latency Failover in

P4. In Proceedings of NEAT.

[159] Seladb. 2018. PcapPlusPlus. (2018). https://github.com/seladb/

PcapPlusPlus

[160] Danfeng Shan, Fengyuan Ren, Peng Cheng, Ran Shu, and Chuanxiong Guo. 2018.

Micro-Burst in Data Centers: Observations, Analysis, and Mitigations. In Pro-

ceedings of ICNP.

[161] Naveen Kr Sharma, Ming Liu, Kishore Atreya, and Arvind Krishnamurthy.

2018. Approximating Fair Queueing on Reconfigurable Switches. In Proceedings

of NSDI.

[162] Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet, and Piet De-

meester. 2013. OpenFlow: Meeting carrier-grade recovery requirements. Computer

Communications 36, 6 (2013), 656–665.

[163] Rajath Shashidhara, Tim Stamler, Antoine Kaufmann, and Simon Peter. 2022.

FlexTOE: Flexible TCP Offload with Fine-Grained Parallelism. In Proceedings of

NSDI.

[164] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy

Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, et al. 2015.

Jupiter rising: A decade of clos topologies and centralized control in Google’s

datacenter network. In Proceedings of SIGCOMM.

[165] Ankit Singla, Chi-Yao Hong, Lucian Popa, and P Brighten Godfrey. 2012. Jellyfish:

Networking data centers randomly. In Proceedings of NSDI.

[166] R Sivaram. 2008. Some Measured Google Flow Sizes. Google internal memo,

available on request (2008).

[167] SNIA. 2018. SFF-8679: QSFP+ 4X Hardware and Electrical Specification. (2018).

https://members.snia.org/document/dl/25969

https://github.com/seladb/PcapPlusPlus
https://github.com/seladb/PcapPlusPlus
https://members.snia.org/document/dl/25969

158 BIBLIOGRAPHY

[168] Steve Sounders. 2009. Velocity and the Bottom Line. (2009). Retrieved

2022-04-22 from http://radar.oreilly.com/2009/07/velocity-making-your-

site-fast.html

[169] Statista. 2021. Worldwide Internet Usage. (2021). Retrieved 2022-03-24

from https://www.statista.com/statistics/617136/digital-population-

worldwide/

[170] TechCrunch. 2013. Microsoft To Refund Windows Azure Customers Hit By

12 Hour Outage That Disrupted Xbox Live. (2013). Retrieved 2022-03-25

from https://techcrunch.com/2013/02/24/microsoft-to-refund-windows-

azure-customers-hit-by-12-hour-outage-that-disrupted-xbox-live/

[171] Frank Uyeda, Luca Foschini, Fred Baker, Subhash Suri, and George Varghese.

2011. Efficiently Measuring Bandwidth at All Time Scales. In Proceedings of NSDI.

[172] Amin Vahdat. 2017. ONS Keynote: Cloud Native Networking. (2017). https:

//youtu.be/1xBZ5DGZZmQ?t=1460

[173] Balajee Vamanan, Jahangir Hasan, and TN Vijaykumar. 2012. Deadline-aware

datacenter TCP (D2TCP). In Proceedings of SIGCOMM.

[174] Niels LM Van Adrichem, Benjamin J Van Asten, and Fernando A Kuipers. 2014.

Fast recovery in software-defined networks. In Proceedings of EWSDN.

[175] Vijay Vasudevan, Amar Phanishayee, Hiral Shah, Elie Krevat, David G Andersen,

Gregory R Ganger, Garth A Gibson, and Brian Mueller. 2009. Safe and effective

fine-grained TCP retransmissions for datacenter communication. In Proceedings of

SIGCOMM.

[176] Ashish Vulimiri, Oliver Michel, P Godfrey, and Scott Shenker. 2012. More is Less:

Reducing Latency via Redundancy. In Proceedings of HotNets.

[177] Shuai Wang, Kaihui Gao, Kun Qian, Dan Li, Rui Miao, Bo Li, Yu Zhou, Ennan

Zhai, Chen Sun, Jiaqi Gao, Dai Zhang, Binzhang Fu, Frank Kelly, Dennis Cai,

http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.statista.com/statistics/617136/digital-population-worldwide/
https://techcrunch.com/2013/02/24/microsoft-to-refund-windows-azure-customers-hit-by-12-hour-outage-that-disrupted-xbox-live/
https://techcrunch.com/2013/02/24/microsoft-to-refund-windows-azure-customers-hit-by-12-hour-outage-that-disrupted-xbox-live/
https://youtu.be/1xBZ5DGZZmQ?t=1460
https://youtu.be/1xBZ5DGZZmQ?t=1460

BIBLIOGRAPHY 159

Hongqiang Harry Liu, and Ming Zhang. 2022. Predictable vFabric on Informative

Data Plane. In Proceedings of SIGCOMM.

[178] Jim Warner. [n. d.]. Packet Buffers. ([n. d.]). https://people.ucsc.edu/

˜warner/buffer.html.

[179] Jim Warner. 2019. Packet Buffers. (2019). https://people.ucsc.edu/˜warner/

buffer.html

[180] Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron. 2011.

Better Never than Late: Meeting Deadlines in Datacenter Networks. In Proceedings

of SIGCOMM.

[181] Dingming Wu, Yiting Xia, Xiaoye Steven Sun, Xin Sunny Huang, Simbarashe

Dzinamarira, and TS Eugene Ng. 2018. Masking Failures from Application Per-

formance in Data Center Networks with Shareable Backup. In Procedings of SIG-

COMM.

[182] Xin Wu, Daniel Turner, Chao-Chih Chen, David A Maltz, Xiaowei Yang, Lihua

Yuan, and Ming Zhang. 2012. NetPilot: Automating datacenter network failure

mitigation. In Proceedings of SIGCOMM.

[183] Mingran Yang, Alex Baban, Valery Kugel, Jeff Libby, Scott Mackie, Swamy

Sadashivaiah Renu Kananda, Chang-Hong Wu, and Manya Ghobadi. 2022. Using

Trio: Juniper Networks’ programmable chipset-for emerging in-network applica-

tions. In Proceedings of SIGCOMM.

[184] Kiran Yedugundla, Per Hurtig, and Anna Brunstrom. 2017. Probe or Wait: Han-

dling tail losses using Multipath TCP. In Proceddings of IFIP Networking.

[185] David Zats, Anand Padmanabha Iyer, Randy H. Katz, Ion Stoica, and Amin

Vahdat. 2013. FastLane: An Agile Congestion Signaling Mechanism for Improving

Datacenter Performance. In Proceedings of SoCC.

[186] Gaoxiong Zeng, Li Chen, Bairen Yi, and Kai Chen. 2022. Cutting Tail Latency in

Commodity Datacenters with Cloudburst. In Proceedings of INFOCOM.

https://people.ucsc.edu/~warner/buffer.html
https://people.ucsc.edu/~warner/buffer.html
https://people.ucsc.edu/~warner/buffer.html
https://people.ucsc.edu/~warner/buffer.html

160 BIBLIOGRAPHY

[187] Ming Zhang, Yu Hua, Pengfei Zuo, and Lurong Liu. 2022. FORD: Fast One-sided

RDMA-based Distributed Transactions for Disaggregated Persistent Memory. In

Proceedings of FAST.

[188] Qiao Zhang, Vincent Liu, and Hongyi Zeng. 2017. High-Resolution Measurement

of Data Center Microbursts. In Proceedings of IMC.

[189] Yu Zhou, Chen Sun, Hongqiang Harry Liu, Rui Miao, Shi Bai, Bo Li, Zhilong

Zheng, Lingjun Zhu, Zhen Shen, Yongqing Xi, et al. 2020. Flow event telemetry

on programmable data plane. In Proceedings of SIGCOMM.

[190] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,

Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and

Ming Zhang. 2015. Congestion control for large-scale RDMA deployments. In

Proceedings of SIGCOMM.

[191] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Maha-

jan, Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y Zhao, et al. 2015. Packet-level

telemetry in large datacenter networks. In Proceedings of SIGCOMM.

[192] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-Tycho Förster, Arvind Kr-

ishnamurthy, and Thomas Anderson. 2017. Understanding and mitigating packet

corruption in data center networks. In Proceedings of SIGCOMM.

[193] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Xuan Kelvin

Zou, Hang Guan, Arvind Krishnamurthy, and Thomas Anderson. 2017. RAIL:

A Case for Redundant Arrays of Inexpensive Links in Data Center Networks. In

Proceedings of NSDI.

	Abstract
	List of Publications
	List of Figures
	List of Tables
	Introduction
	Challenges in providing tail FCT SLA Guarantees
	FCT increase due to congestion events
	FCT increase due to network failure events

	The In-Network Approach
	Why the In-network approach works?

	Summary of Thesis Contributions
	BurstRadar
	SQR
	LinkGuardian

	Thesis Structure

	Related Work
	Handling Congestion Events
	Monitoring Microbursts

	Handling Link Failure Events
	Handling Fail-stop Link Failures
	Handling Gray Link Failures

	BurstRadar
	Introduction
	System Design
	Snapshot Algorithm
	Courier Packet Generation
	Ring Buffer
	Implementation

	Evaluation
	Efficiency
	Handling Concurrent Microbursts
	Resource Utilization

	Summary

	SQR
	Introduction
	Motivation
	SQR Design
	Caching Packets on the Switch.
	Multi-Queue Ring Architecture
	Delay Timer
	Dynamic Queue Selection
	Packet Order Logic
	Implementation

	Performance Evaluation
	Experimental setup
	Masking Link Failures from TCP
	Latency-sensitive Workloads
	Overhead

	Discussion
	Summary

	LinkGuardian
	Introduction
	The Case for Mitigating Link Corruption
	Impact of Higher Link Speeds
	Most flows are short flows
	Impact of RDMA Workloads

	LinkGuardian
	Fast ACKs for minimum Buffer Overhead
	Tail Losses for Single-Packet Flows
	Reordering Buffer without Overflow
	Mitigating Potential ReTx Losses
	Implementation Details
	Repairing Corrupting Links in Practice

	Evaluation
	Parameter Tuning
	Effective Loss Rate & Link Speed
	Impact on Transport Protocols
	Tail Packet Loss and Short Flows
	Contribution of different mechanisms
	Overhead
	Comparison with Wharf
	Effectiveness in large-scale deployment

	Discussion and Future work
	Summary

	Conclusion and Future Directions
	Future Directions
	Temporal packet buffering beyond handling link failures
	Better dataplane primitives for temporal packet buffering
	Fast and Efficient Monitoring of Link Failures
	Scaling to future link speeds
	Adoption in practice

	Summary of Thesis Contributions

	Appendices
	LinkGuardian
	Protocol Details
	Loss Detection & Notification
	Sender-side Buffering & Retransmission

	Monitoring Links for Corruption
	Link Corruption Trace Generation

	Bibliography

