In-Network Techniques for Highly Reliable
Datacenter Networks

RAJ JOSHI

NATIONAL UNIVERSITY OF SINGAPORE
2022

% National University
of Singapore

In-Network Techniques for Highly Reliable
Datacenter Networks

RAJ JOsHI
(B.E.(Homns.), BITS Pilani)

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE
SCHOOL OF COMPUTING
NATIONAL UNIVERSITY OF SINGAPORE

2022

SUPERVISOR:
ASSOCIATE PROFESSOR BEN LEONG WING LUP

COLLABORATOR:
PROFESSOR CHAN MUN CHOON

EXAMINERS:
ASSISTANT PROFESSOR JIALIN L1
ASSOCIATE PROFESSOR RICHARD MA TIANBAI

DECLARATION

I hereby declare that this thesis is my original work and it has been written by me in its
entirety. I have duly acknowledged all sources of information which have been used in the

thesis.

This thesis has not been submitted for any degree in any university previously.

Raj Joshi
December 11, 2022

DEDICATION

To my late mother (31T¥), my strength, my inspiration.

ACKNOWLEDGEMENTS

This section is quite long and I am unapologetic about it — it is just due to the sheer number of people
who have been a part of this incredible journey.

I would like to express my deepest gratitude to my advisor Ben Leong for his unwavering support
and guidance over the years. Throughout the course of my PhD, he has helped instill a sense of scientific
rigor in me — be it while doing experiments or writing a paper. By being a staunch critic of my ideas, Ben
has helped me watch out for potential pitfalls in the early stages of my projects. Through the countless
challenges and hardships of my PhD journey, one of the things that has kept me going is his encouraging
advice that if we work hard, do the right thing, good things will happen! Beyond research, he has also
shown me what it means to be a good teacher and a good human being. My PhD has been the most
challenging phase of my life so far, more due to the circumstances outside of research. Ben has went
way beyond the call of his duty to support me in all possible ways, even extraditing me out of difficult
situations. There have been several moments when I have felt extremely vulnerable. But during such
times, I always found a sense of security in the feeling that no matter how much things go south, Ben
will always have my back. I could not have asked for a better advisor and a godfather-like mentor.

I have been incredibly fortunate to have Mun Choon Chan as a collaborator, mentor and an unof-
ficial co-advisor. His enthusiasm of working closely with his students and being hands-on with code or
experiment data always made me feel that I am working “with” him rather than “under” him. He has
been a staunch supporter of my ideas and has backed them since inception till paper publication, while
still being critical of the problematic aspects. Faced with deepest technical issues, his timely advice has
helped me find the right solutions. His ever-balanced view of things always ensured that I look at both
the positive and critical aspects, and not just the critical aspects. After nearly every meeting with him,
I have found more clarity of thought and felt more encouraged. I could not have asked for a better
combination of advisors than what I found in both Ben and Mun Choon.

I have been fortunate to have a set of wonderful collaborators working with whom was really fun.
They include Pravein Govindan Kannan, Ayush Mishra, Nishant Budhdev, Qu Ting, Boon Thau Loo
(from UPenn), Chahwan Song (Mason), Xin Zhe Khooi, and Mobashir Mohammad. T also had the plea-

viii

sure of working with and mentoring some very talented interns, notably Harsh Gondaliya and Deepanshu
Jindal. Several colleagues in the lab have been very helpful with their feedback on my papers, talks or by
just being a listening ear or a sounding board. Thank you Aditya Kulkarni, Oana Barbu, Zixiao Wang,
Xiangyun Meng, Wang Qiang, Ebram Kamal William, Nitya Lakshmanan, and Soundarya Ramesh for
being an important part of my time at graduate school. I would also like to thank Shweta Shinde for
her super helpful advice, inspiration and encouragement from time to time throughout this journey.

I must also thank all the “backstage actors” who have contributed to this research and whose names
have not appeared even in the acknowledgement sections of my papers (page limit constraints!). I have
been fortunate to have excellent support from the admin staff of my school. They have played a crucial
role in handling grants, equipment purchases, intern appointments, moving to COM3 (new building), and
so many other peripheral tasks that helped support my research. Thanks are due to the entire HR, admin
and building facilities teams with a special mention for Iris Chang who has been truly phenomenal in her
admin support. I would also like to thank the customer support and engineering teams of fs.com who
provided unprecedented support in supplying the research equipment I needed, sometimes doing special
customizations to support my very specific requirements. Thanks are also due to Aung Nyein Kyaw
(affectionately known as “bro”) for running the “Cool Spot” drinks and snacks stall even on Sundays
and public holidays.

I feel incredibly blessed to have the infinite support and love of my family. It is only due to my
mother’s many struggles and sacrifices that I am where I am today. She has been a constant source of
moral support and strength for me. Destiny separated us (physically) a bit too early. But she continues
to inspire me to be a fighter like her! I owe her this thesis and much more. I feel incredibly lucky to
have a twin brother, Ravi Joshi, who has been unwavering in his support — right from my decision to
pursue a PhD till date. Being always a bit more experienced than me in his PhD journey, he has been a
constant guiding light throughout my PhD journey. I would also like to thank my cousin brother, Vinit
Belwalkar, who was of immense help during the time when I juggled between taking care of my mother’s
cancer treatment and working on research papers — few of which received best paper awards! Thanks
are also due to the newest and sweetest member of the family, my sister-in-law Tanvi Shirali, for all her
love and care in the recent years. I have also been blessed to have a family friend, Anjanie Giggard, who
has been keeping a motherly watch on me in the recent years.

I have had the privilege to have a wonderful bunch of friends who bring so much cheer and joy in
my life. Thanks to Ashish Dandekar, Suparna Ghanvatkar, Omkar Kulkarni and Apurva Kulkarni for
being my family here in Singapore. All of you have been of immense help and support during several
critical phases of my PhD — be it waking me up during important deadlines or taking care of me when I
have been sick. Suparna has been the central pillar of my support system in Singapore who was always
there by me through all the good and bad days in the recent years. She has also been a trusted advisor

for anything from inter-personal relations to statistical data analysis in Python. Akanksha Tiwari and

ix

Tapeesh Sood have also been a great support right from the beginning of my PhD. I would also like to
thank my long time friends, Kriti Aggarwal, Shivam Rai, and Kirti Bhandari for always believing in me

and being there at the critical junctures of my life.

Last but not the least, I would like to thank a few people in the networking research community for
their support when I needed it the most. Thank you Radhika Niranjan, Changhoon Kim, Yiting Xia,
Sergey Gorinsky, Venkat Padmanabhan, and Sujata Banerjee for your support through the abysmally

short personal interactions I had with you.

Contents

Abstract

List of Publications
List of Figures

List of Tables

1 Introduction

1.1 Challenges in providing tail FCT SLA Guarantees
1.1.1 FCT increase due to congestion events
1.1.2 FCT increase due to network failure events

1.2 The In-Network Approach
1.2.1 Why the In-network approach works?

1.3 Summary of Thesis Contributions
1.3.1 BurstRadar e
132 SQR .« .« o e
1.3.3 LinkGuardian

1.4 Thesis Structure L

2 Related Work

2.1 Handling Congestion Events o
2.1.1 Monitoring Microbursts
2.2 Handling Link Failure Events
2.2.1 Handling Fail-stop Link Failures
2.2.2 Handling Gray Link Failures

3 BurstRadar

3.1 Imtroduction e
3.2 System Design
3.2.1 Snapshot Algorithm,
3.2.2 Courier Packet Generation

323 RingBuffer

xii CONTENTS

3.2.4 Implementationo 41
3.3 Evaluation 42
3.3.1 Efficiency e 44
3.3.2 Handling Concurrent Microbursts 45
3.3.3 Resource Utilization 47
3.4 Summaryo e 47
SQR 49
4.1 Introduction 50
4.2 Motivation L e 55
4.3 SQR Design 58
4.3.1 Caching Packets on the Switch. 60
4.3.2 Multi-Queue Ring Architectureo Lo 61
4.3.3 Delay Timer 62
4.3.4 Dynamic Queue Selection 63
4.3.5 Packet Order Logic 65
4.3.6 Implementation L 66
4.4 Performance Evaluation L o o 67
4.4.1 Experimental setup. L 67
4.4.2 Masking Link Failures from TCP 69
4.4.3 Latency-sensitive Workloads 72
4.4.4 Overhead L 74
4.5 Discussion e 7
4.6 SUMMATY . .« . v v e e e e e e e e e e e e e e 79
LinkGuardian 81
5.1 Imtroduction 82
5.2 The Case for Mitigating Link Corruption 86
5.2.1 Impact of Higher Link Speeds 86
5.2.2 Most flows are short flows oL 87
5.2.3 Impact of RDMA Workloads 88
5.3 LinkGuardian 90
5.3.1 Fast ACKs for minimum Buffer Overhead 93
5.3.2 Tail Losses for Single-Packet Flows 93
5.3.3 Reordering Buffer without Overflow 94
5.3.4 Mitigating Potential ReTx Losses 96
5.3.5 Implementation Details o oL 97
5.3.6 Repairing Corrupting Links in Practice 99
5.4 Evaluation Lo 100
5.4.1 Parameter Tuningo 103
5.4.2 Effective Loss Rate & Link Speed 104
5.4.3 Impact on Transport Protocols 106

5.4.4 Tail Packet Loss and Short Flows 108

CONTENTS

xiii

5.4.5 Contribution of different mechanisms
5.4.6 Overhead s
5.4.7 Comparison with Wharf

5.4.8 Effectiveness in large-scale deployment

5.5 Discussion and Future work o

5.6 Summary

6 Conclusion and Future Directions

6.1 Future Directions

6.1.1 Temporal packet buffering beyond handling link failures

6.1.2 Better dataplane primitives for temporal packet buffering
6.1.3 Fast and Efficient Monitoring of Link Failures
6.1.4 Scaling to future link speeds

6.1.5 Adoption in practice

6.2 Summary of Thesis Contributions

Appendices

A LinkGuardian

A.1 Protocol Details
A.1.1 Loss Detection & Notification
A.1.2 Sender-side Buffering & Retransmission

A.2 Monitoring Links for Corruption

A.3 Link Corruption Trace Generation

Bibliography

125
126
126
126
127
128
130
131

135

135
135
135
137
138
138

141

Abstract

Datacenters power today’s large-scale Internet services such as web search, video streaming,
e-commerce, and social networks for billions of users around the world. Within the datacenters,
these large-scale services are realized through distributed applications running on thousands
of servers which are connected by the datacenter network. The data transfers (called flows)
between these distributed applications need to complete as quickly as possible because the
flow completion time (FCT) directly impacts user experience, and thus revenue. Therefore,
datacenter networks have stringent service-level requirements (SLAs) to guarantee that the
worst-case (tail) FCTs have a tight bound. Bounding the tail FCTs in the datacenter network
environment is challenging as network congestion events can cause arbitrary increase in FCTs
and affect the SLAs. Further, link failures, which are a norm in datacenter networks, cause
packet loss which also increases FCTs by several fold. In this thesis, we propose three in-
network techniques to mitigate the increase in tail FCTs in the face of transient congestion
events and link failures.

While significant prior work has been done on datacenter congestion control, in practice,
complex interactions between application traffic can still lead to transient congestion events
(called microbursts) and increase the FCTs. Mitigating microbursts requires continuous and
careful tuning of system parameters based on a thorough understanding of the microbursts
occurring in the network. To this end, we design and implement BurstRadar a system that op-
erates in the network dataplane and monitors microbursts by efficiently capturing the telemetry
information for every packet involved in microbursts. Our evaluation on a multi-gigabit testbed
shows that BurstRadar incurs 10 times less data collection and processing overhead than existing
solutions.

Besides transient congestion events, packet drops due to link failures also increase the tail
FCT by several fold. In datacenter networks, links can fail either completely (fail-stop failure)
or partially (gray failure). Both types of link failures lead to packet loss that impacts tail
FCTs. Existing techniques for managing fail-stop link failures cannot completely eliminate
packet loss during such failures. To this end, we propose Shared Queue Ring (SQR), an on-
switch mechanism that completely eliminates packet loss during link failures by diverting the

affected flows seamlessly to alternative paths. SQR is implemented in the network dataplane

ii Abstract

using dataplane-programmable switches. Our evaluation on a hardware testbed shows that
SQR can completely mask link failures and reduce tail FCT by up to 4 orders of magnitude for
latency-sensitive flows.

A link with gray failure randomly drops packets due to bit corruption and such packet loss
is significant in datacenter networks. Previous attempts to mitigate packet corruption loss seek
to avoid the faulty links by routing around them, at the cost of reduced network capacities and
disruption to the rest of the network. In this thesis, we investigate the feasibility and tradeoffs
of the classical loss recovery strategy of link-local retransmissions in the context of datacenter
networks. We present the design and implementation of LinkGuardian, a dataplane-based
protocol that detects the packets lost due to corruption and retransmits them while preserving
ordering. Our results show that for a 100G link with a loss rate of 103, LinkGuardian can
reduce the loss rate by up to 6 orders of magnitude while incurring only 9% reduction in
the link’s effective link speed. By detecting and eliminating tail packet losses, and avoiding
timeouts, LinkGuardian improves the 99.9"" percentile FCT for TCP and RDMA by 18x and
160x respectively.

In summary, in this thesis, we demonstrate that it is possible for datacenter networks to
perform reliably in view of transient congestion events as well as link failures using in-network

techniques that leverage dataplane-programmable switches.

List of Publications

1. Raj Joshi, Ting Qu, Mun Choon Chan, Ben Leong and Boon Thau Loo, “BurstRadar:
Practical Real-time Microburst Monitoring for Datacenter Networks”. Proceedings of the
9th ACM Asia-Pacific Workshop on Systems (APSys 2018). Jeju Island, South Korea.
August 2018. [Chapter 3]

2. Raj Joshi, Ben Leong, Mun Choon Chan, “TimerTasks: Towards Time-driven Execution
in Programmable Dataplanes”. Proceedings of the ACM SIGCOMM 2019 Conference
Posters and Demos (SIGCOMM 2019, Poster). Beijing, China. August 2019. [Chapter 5]

3. Ting Qu*, Raj Joshi*, Mun Choon Chan, Ben Leong, Deke Guo and Zhong Liu, “SQR:
In-network Packet Loss Recovery from Link Failures for Highly Reliable Datacenter Net-
works”. Proceedings of the 27th IEEE International Conference on Network Protocols
(ICNP 2019). Chicago, Illinois, USA. October 2019. [Chapter 4]

(Awarded Best Paper.)(* equal contribution)

4. Raj Joshi, Qi Guo, Nishant Budhdev, Ayush Mishra, Mun Choon Chan, Ben Leong,
“LinkGuardian: Mitigating the impact of packet corruption loss with link-local retrans-
mission”. Proceedings of the 6th Asia-Pacific Workshop on Networking (APNet 2022).
Fuzhou, China. [Chapter 5]

5. Raj Joshi, Cha Hwan Song, Nishant Budhdev, Xin Zhe Khooi, Mun Choon Chan, Ben
Leong, “Masking Corruption Packet Losses in Datacenter Networks with Link-local Re-

transmission”. Under Submission (Long Paper). [Chapter 5]

List of Figures

1.1
1.2

2.1
2.2
2.3

2.4

3.1
3.2
3.3
3.4
3.5

3.6

3.7

4.1
4.2
4.3

4.4
4.5
4.6
4.7

4.8
4.9

Lifecycle of managing unpredictable congestion events in datacenter networks. . .

Problem space for bounding tail FCTs in datacenter networks

Example operation of In-band Network Telemetry (INT) to monitor microbursts
cwnd size distribution for short flows 0oL
Design space for mitigating corruption packet loss due to gray link failures in
datacenter networks. oL oL
A single pod from Facebook’s state-of-the-art datacenter network. Image adapted

from: Alexey Andreyev, Facebook [12].

General architecture of a programmable switching ASIC [49]
Evolution of an example queuing microburst at different instants in time
Cloning and serialization delay for packets of different sizes
Testbed setup L
Fraction of total number of packets processed for different latency-increase thresh-
olds e
Number of extra packets marked compared to the Oracle solution for different
packet size distributions (Cache Traffic)
Fraction of microburst packets missed with concurrent microbursts for different

ring buffer size

Design space for link failure management.
Testbed. o
FCTs of latency-sensitive web search flows [8] under link failures with Share-

Backup as route recovery mechanism. Lo
Caching packets on switch using a FIFO queue.
Multi-Queue Ring architecture. o Lo
Flow size distributions used in evaluation.
TCP sender’s cwnd and seq number progression for SB’ with and without SQR.

Link failure occurs after about 2 seconds.
Recovery time.o L

Number of packets lost for different route failure time.

20

vi LIST OF FIGURES

4.10

4.11
4.12
4.13
4.14

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11
5.12

5.13
5.14
5.15

5.16
5.17

5.19

5.20

6.1

FCTs of latency-sensitive web search flows [8] under link failures with SB'+SQR

as route recovery mechanism. Lo 72
FCTs of failure-hit web search flows [8] compared to no failure. 72
CDF of FCTs for two workloads under link failures. 73
Steady-state packet buffer consumption (per-port). 74
Impact of SQR processing on normal line-rate traffic. 75

Effect of optical attenuation on high speed Ethernet standards with higher bau-
drates and denser modulation. L Lo 82

Distribution of corruption loss rates and time-varying corruption on a single link

as observed by Zhuo et al. [192] Lo 86
Flow size distribution of several industry datacenter workloads from 2008 to

2019 [8, 16, 119, 154, 166]. o o o oo 88
Top 1% FCTs for 143B flows on a 25G link with and without 10 corruption

packet loss. L 89
LinkGuardian Design Overview. 91
Logical view of receiver-side ingress buffer (recirculation port queue). 95
Distribution of consecutive packets lost. 00 98
Testbed with Variable Optical Attenuator (VOA). 101

Variable Optical Attenuator (VOA) setup used in the motivation and evaluation
experiments.l e e e 101
Delay observed by LinkGuardian receiver switch to receive retransmission from
the time the loss was detected. L oo, 102
tflight_resume delay observed by receiver switch. 000 104
Effective loss rates achieved by LinkGuardian and the corresponding effective
link speeds. L 105
Performance of LinkGuardian for CUBIC, DCTCP, and BBR Transport Protocols.107
DCTCP on a 25G link with 103 loss, with PFC-based backpressure disabled. . . 108

Top 1% FCTs for 143B flows on a 100G link. 109
Top 5% FCTs for 24,387B flows (17 pkts) on a 100G link. 110
LinkGuardian’s packet buffer usage for different link speeds and packet loss rates.

Whiskers show min, max, 25, 50", 75" percentiles. 114

Simulation results for Facebook fabric topology (100K optical links) when the
capacity constraint is 50%. 118
Simulation results for Facebook fabric topology (100K optical links) when the
capacity constraint is 75%. 119
For the entire simulation period of 1 year, the CDF of (a) The ratio of total
penalty of vanilla CorrOpt to that of LinkGuardian 4+ CorrOpt; and (b) Decrease
in least capacity per pod of LinkGuardian + CorrOpt compared to vanilla CorrOpt.120

Priority order for infrastructure work at Google Cloud [172] 131

LIST OF FIGURES vii

A.1 State maintained by LinkGuardian switches and different types of packets that
read/update it. 135

A.2 Sender-side buffering and Retransmission. 137

List of Tables

3.1

4.1
4.2

5.1

5.2
5.3

Hardware resource consumption of BurstRadar (ring buffer size of 1k entries)

compared to the baseline switch.p4 oo L. 47
ASIC packet buffer trends 53
Resource consumption of SQR compared to switch.p4 77

Top 1% FCT (us) for 24,387B DCTCP flows for different LinkGuardian mecha-
nisms: tail loss handling (“Tail”) and preserving packet order (“Order”) 113

Recirculation overhead (% pipe forwarding capacity) 114
TCP CUBIC goodput (Gb/s) on a 10G Link 116

Chapter

Introduction

Datacenters, also colloquially known as the “cloud”, are central to hosting and running
today’s large-scale Internet services ranging from web search and e-commerce to video
streaming, conferencing, and social networking. The wide-spread and ever-increasing
Internet access has driven the growth of these Internet services that serve billions of
users around the world today [169]. Furthermore, with the recent COVID-19 pandemic
pushing more businesses and socioeconomic activities online, the global cloud comput-
ing market size is expected to grow to USD 947.3 billion by 2026 [124]. For ensuring
scalability and reliability, these large-scale Internet services are often implemented as
distributed applications that run across a large number of servers connected by a net-
work [96]. Consequently, today’s datacenters are massive computing infrastructures with
hundreds of thousands of servers interconnected by a large and high-speed network with
peta-bit scale bandwidth at its core [164].

Majority of today’s Internet services that are hosted and run by the datacenters are
soft real-time [8]. This is because they are latency-sensitive and the failure to meet the
response deadline adversely impacts user experience and thus revenue [8, 34, 50, 85, 157,
168]. For example, experiments at Amazon showed that increased latency in page load

times led to decrease in online sales while at Google increase in search results display

2 Introduction

time led to decrease in revenue [113]. A study by Akamai shows that a delay of 100 ms in
website load time can hurt the conversion rate! by 7% [4]. Besides directly affecting the
revenue, Internet service providers, in certain situations, also suffer additional losses in
terms of compensation to customers when the performance and availability guarantees
are not met [170].

The total permissible latency for an Internet service is determined by customer im-
pact factors of the specific service [114]. After excluding the Internet and the client
rendering delays, what remains is the “backend latency” limit which needs to be met
by the distributed applications running in the datacenter [8]. This backend latency
budget gets further divided into server processing and network communication stages
required by the distributed applications implementing the Internet service [96, 173].
The typical request/query processing workflow of an Internet service consists of many
sequential stages involving parallelization across 1000s of servers and aggregation of re-
sponses across the network [96]. For example, the processing workflow for a Bing search
query on average involves 15 stages where 10% of stages process the query in parallel
on 1000s of servers [96]. Similarly, a popular page load request on Facebook can require
fetching 1000s of distinct objects distributed across 100s of memcached servers [142].
As the processing workflows involve 1000s network communications (flows), 10s of them
occurring serially, the latency budget for each individual flow is on the order of microsec-
onds [9, 20]. In this way, the user-level service deadlines ultimately translate into flow
completion time (FCT) targets for the network communication between the distributed
applications within the datacenter [180]. As a result, the tail (worst-case) flow comple-
tion times (FCTs) of datacenter network communication have a direct impact on the
user-level service deadlines and thus the revenue [51]. Consequently, datacenter network
operators are required to provide stringent SLA guarantees on tail FCTs at a microsec-

ond scale [8, 51, 68, 142, 155]. For example, even if the SLA guarantees 99.9% of the

!percentage of website visitors that take a desired action.

1.1 Challenges in providing tail FCT SLA Guarantees 3

flows to complete within a bounded time, for processing requests involving 100 flows,
the probability that at least one of the 100 flows will face higher FCT and affect the
overall request processing is ~9.5%.

We note that apart from the flow completion times of network data transfers (flows),
the tail performance of request processing in datacenters is also affected by the tail
performance of the involved server processing [96]. There is a separate body of literature
for addressing tail performance due to server processing [52, 118, 126]. However, in this
thesis, we focus on the network-related sources of tail performance i.e. the FCTs for the
network flows.

In the following subsection, we describe the challenges involved in providing SLA

guarantees on tail FCTs in today’s datacenter networks.

1.1 Challenges in providing tail FCT SLA Guarantees

Providing a tight bound on tail FCTs in today’s datacenter networks is challenging as
several factors can lead to abnormal increase in the FCTs and violate the SLAs. Broadly,
the various factors can be categorized into two main categories - congestion events and

failure events. We elaborate on them below.

1.1.1 FCT increase due to congestion events

Several links in a datacenter network are shared across 1000s of servers. Depending
on the traffic patterns, these links can become congested (at short timescales) causing
packet queues to build up on switches. Such queue build ups cause transmission delays
and increase the tail (worst-case) FCTs. It is, therefore, not surprising that a significant
amount of prior work has been done on datacenter congestion control [8, 9, 10, 17, 76,
83, 87, 149, 173, 180] and load balancing [7, 109] to keep the queue occupancies low

and thereby prevent increase in the tail FCTs. Yet, unpredictable congestion events

4 Introduction

(microbursts) can still occur due to different operating conditions (compared to the
original design) and due to complex unanticipated interactions of different flows. We
elaborate on these below.

Many of these prior designs are based on the assumptions that may not hold in prac-
tice. For example, although DCTCP was designed to keep the queue occupancies low [8],
Judd [101] reported that in their deployment of DCTCP in Morgan Stanley datacen-
ters, it did not keep the queue occupancies low under certain conditions and required
further tuning based on the link speeds and traffic characteristics. Also, application
traffic patterns evolve over time which can invalidate some of the previous assumptions.
For example, for a web search workload, less than 1% flows were reported to have flow
sizes less than 1000 bytes in 2010 [8] compared to 95% flows in 2018 [134]. Also, much
of the prior work focuses on preventing “systematic” congestion events under assumed
operating conditions and therefore cannot prevent the unpredictable congestion events
that arise from complex unanticipated interactions between flows. For example, Google’s
datacenter network fabric supports thousands of distinct applications and services [164],
each with different traffic characteristics. Furthermore, different applications can employ
different congestion control algorithms, especially in multi-tenant datacenters. Due to
different application requirements, having a mix of congestion control is possible even
when the datacenter is under a single administrative control [101]. This leads to complex
and unanticipated interactions between flows as there is no precise control over how in-
dependent flows interact with each other at the network switches along their paths [97].
Other factors leading to microbursts include TCP incast in partition-aggregate traffic
patterns [8, 115], occasional synchronization of application traffic [105], TCP segment
offloading or application-level batching [160]. Popular webservices such as LinkedIn have
reported the occurrence of microbursts leading to increased network latency [103]. Mea-
surements from Facebook datacenter estimate that microbursts can occur as frequently

as 200 us and last 100’s of us [188]. In today’s datacenter networks, since the normal

1.1 Challenges in providing tail FCT SLA Guarantees 5

Congestion Control, AQM, Feedback/tuning Continuous Congestion
Application-level parameters Event Monitoring

Production
Deployment

Figure 1.1: Lifecycle of managing unpredictable congestion events in datacenter net-
works.

end-to-end network delays are on the order of 10’s of us [60], an occasional 100 us queuing
delay becomes unacceptable and affects the SLAs [189].

Overall, it not plausible to design congestion control, load balancing and active queue
management (AQMs) schemes for a datacenter network that take into account all pos-
sible complex interactions and work together to keep the tail FCTs low. In other words,
handling congestion events with the management strategy of “design, deploy and forget”
is not possible since unpredictable congestion events are likely to occur due to unantici-
pated interactions. Instead there is a need to continuously monitor unpredictable conges-
tion events, find their causes, and use this information to mitigate future occurrences by
adapting the deployed congestion control, AQMs, load-balancing, etc. Figure 1.1 shows
this management strategy where, post deployment, continuous monitoring of congestion
events provides the feedback required to fine-tune and adjust the deployed schemes such

that the current causes of unpredictable congestion events are eliminated.

1.1.2 FCT increase due to network failure events

Another major cause of increase in FCT is network failure events that typically cause
packet loss. In this thesis, we focus on network link failures as they are more prevalent
compared to network device failures [73]. Network link failures are of two types: (i) Fail-
stop link failures: when the network link connection between two network devices

is completely “down”. (ii) Gray link failures: when the network link connection

6 Introduction

between two network devices is “up”, but the link corrupts certain packets. Both types
of link failures result in packet loss. The packet loss could be transient if the network
management system is able to detect the link failures and route traffic such that it avoids
the failed link. However, for short-latency sensitive flows, even a small amount of packet
loss can increase the FCT by several fold [152]. Below we provide further details on the
two types of link failures.

Fail-stop link failures. Fail-stop link failures occur when one or more of the hard-
ware components forming the link fail. These components include line cards, transceivers,
fiber/copper cables, etc. They can also be caused by connection problems due to carrier
signaling /timing issues [62]. Datacenter networks typically use commodity hardware
in order to trade-off significant hardware costs for slightly reduced reliability [21, 193].
While the individual network components have a small but non-zero failure rate, with
thousands of switches and tens of thousands of links in a datacenter, the aggregate
link failure rate across the datacenter network can be significant enough to inflict suf-
ficient packet loss and affect the SLAs. In practical datacenter operating conditions,
the reported MTBF (Mean Time Between Failures) for network links is on the order of

10,000 hrs [127]. Using this, we can estimate the hourly link failure rate as below,

Fai = — 1.1
ailure Rate WTEEF (1.1)

For a MTBF on the order of 10,000 hrs, the failure rate comes to be ~10™* per hour.
Since the number of links in a large datacenter network are on the order of ~10°, a failure
rate of 10 per hour means that we can expect 10’s of links to fail every hour. This
example calculation indeed corroborates with real-world data from production datacenter
networks. Gill et al. reported an average of 40.8 links failing each day [73]. At the 95
percentile, about 136 links are reported to fail daily [73].

Gray link failures. Compared to fail-stop link failures, gray link failures have very

1.1 Challenges in providing tail FCT SLA Guarantees 7

different failure characteristics. Gray link failures typically occur on optical links. In
datacenter networks, switch-to-switch links are typically optical [182, 192] as they can
support high link speeds (10-400 Gbps) over long distances compared to electrical links.
Optical links are susceptible to packet corruption, as the optical receiver sometimes
fails to correctly decode the transmitted bits. Optical decoding errors can occur due
to a variety of reasons such as fiber bending, connector or fiber tip contamination by
airborne dirt particles, decaying laser transmitters, etc. [182, 192]. When an optical
decoder decodes the bits of a packet incorrectly, the Ethernet frame checksum (FCS)
fails and the receiving MAC drops the packet. With tens of thousands of optical links in
a datacenter, packet corruption loss can be significant. A large-scale study by Microsoft
consisting of 350K links across 15 datacenters shows that the number of packet lost due
to corruption can be on par with the number of packets lost due to congestion [192].
Another study by AliBaba showed that about 18% of the packet drops that caused
serious network performance degradation to their cloud customers were caused due to
corruption [189].

Overall, packet loss due to both types of link failures is a norm in datacenter net-
works. It therefore needs to be handled for ensuring reliable delivery of packets such that
end-to-end retransmissions and retransmission timeouts do not occur and thus the tail
FCTs remain bounded. One way to prevent packet loss due to link failures could be to use
highly reliable hardware. However, highly reliable network hardware is prohibitively ex-
pensive, especially for the large scale of the datacenter networks. The challenge therefore
lies in achieving reliable (nearly) no loss packet delivery on top of commodity network-
ing hardware. Other aspects of datacenter computing such as datacenter storage have
long followed the trend of using cheaper commodity hardware (e.g. disks) and masking
the hardware unreliability from applications through intelligent techniques [71]. Similar

masking of unreliability needs to be achieved for datacenter networking hardware.

8 Introduction

Bounding Tail FCTs in datacenter networks * Thesis Contributions
|
|
Handling Congestion Events Handling LinkIFaiIure Events
|
1 1 I 1
Systematic Congestion Unpredictable Congestion Fajl-stop Gray
[BurstRadar*] I I
1 1 1 11 1 1
Congestion Control/ Load Balancing In-network Host-based Re-routing Link-local

AQM schemes [Conga, Hulal Loss Recovery Loss Recovery [CorrOpt, Retransmission
[DCTCP, DeTail [SQR*] [TCP, FUSQO] RAIL] [LinkGuardian*]

NDP, PAIS]

Figure 1.2: Problem space for bounding tail FCTs in datacenter networks

1.2 The In-Network Approach

Figure 1.2 shows the problem space for ensuring bounded tail FCTs in datacenter net-
works. A vast majority of the current solutions to handle congestion events as well as
link failure events take the end-to-end approach i.e. they treat the network as a black
box that simply forwards packets and solutions run mainly on the end host servers.
The end-to-end approach works really well for handling systematic congestion events
as their causes are mainly rooted at the hosts. As a result, systematic congestion is a
well-researched problem with decade-worth of prior work (discussed in §1.1.1). How-
ever, as we show through the following chapters, the end-to-end approach is insufficient
to mitigate the impact of unpredictable congestion events or handle link failure events
in order to ensure bounded tail FCTs.

In this thesis, we take an in-network approach to mitigate unpredictable congestion
events as well as handle link failures. In our in-network approach, the solutions run
entirely within the network while being nearly transparent to the end hosts. The key
enabler for our in-network approach is a new hardware technology called the dataplane
programmable switches [36, 95, 139]. These switches allow us to implement algorithms
within the forwarding chip (dataplane) of network switches. Once implemented, these

algorithms then run at hardware speeds (~ Tbps). Below we list the key new function-

1.2 The In-Network Approach 9

alities enabled by programmable switches which make our in-network approach feasible:

o Packet-level operation: Even at terabit-level aggregate speeds, programmable
switches allow us to perform operations at a per-packet granularity i.e. they allow

us to implement algorithms at the highest resolution of a single packet.

o Stateful operation: Programmable switches provide state in the dataplane that
can be accessed at hardware speeds (~Tbps). This allows implementing stateful

algorithms and protocols where the logic spans several packets.

o Packet cloning: These switches allow creating copies of the packets at hardware
speeds. They also provide different on-chip paths that allow us to move these
packet copies and place them in any output (egress) queue. This essentially en-
ables the possibility of performing switch-based packet retransmission at hardware

speeds.

¢ Per-packet queuing telemetry and precise timestamping: Programmable
switches are also able to track queue size information on a per-packet basis. For
example, for each packet, the hardware can provide information about the queue
size when the packet was enqueued and the queue size when the packet was de-
queued from the queue. Within the dataplane, switches also provide per-packet
timestamping at a nanosecond resolution [106]. The per-packet queuing telemetry
combined with precise timestamping provides high-resolution data to reconstruct

any unpredictable congestion events that last only 100’s of us.

¢ On-chip packet generation: Programmable switches provide different ways to
generate new packets at hardware speeds. This makes it possible to implement
protocol messages between different switches at hardware speeds and also allows

to transfer any telemetry information out of the switch dataplane (switching chip).

Armed with these new functionalities enabled by programmable switches, in this the-

10 Introduction

sis we propose three in-network solutions with a common goal of ensuring bounded tail
FCTs in datacenter networks. Specifically, for unpredictable congestion (microbursts),
we propose BurstRadar which provides continuous and efficient in-network monitoring of
microbursts irrespective of the cause. BurstRadar helps the network operators to iden-
tify the cause for every single microburst occurring in the network so that the network
operators can take corrective actions such as tuning application and congestion con-
trol parameters, addressing an offending flow/application, etc. Basically, BurstRadar
provides continuous congestion event monitoring which is an integral part of managing
unpredictable congestion events (see Figure 1.1). For fail-stop link failures, we propose
SQR which performs seamless in-network packet loss recovery such that the end-host ap-
plications can remain completely oblivious to any link failures occurring in the network.
SQR runs locally on a single switch and requires no coordination with other switches
since fail-stop link failures can be detected locally. For handling gray link failures, we
propose LinkGuardian which also performs in-network packet loss recovery. While Link-
Guardian uses similar techniques as SQR for packet cloning and retransmission, the key
difference is that LinkGuardian needs to perform selective retransmission of only the
packets that were lost due to corruption packet loss. To do so, LinkGuardian imple-
ments a fast and efficient link-local packet loss detection and retransmission protocol

that runs between two adjacent switches that share the corrupting link.

1.2.1 Why the In-network approach works?

As discussed in §1.1.1, continuous monitoring of congestion events is required to find
the current causes of unpredictable congestion events so that they could be fixed later.
However, due to the transient nature of the congestion events (lasting 100’s of us), an
end-to-end approach [14, 135] fails to even detect the congestion events, let alone collect
sufficient telemetry information that enables finding the root cause. The key insight

behind BurstRadar’s in-network approach is to capture the unpredictable congestion

1.2 The In-Network Approach 11

events locally within a switch’s dataplane (where they occur) and then export the per-
packet telemetry information for each congestion event. This is enabled by the per-
packet queuing telemetry, precise timestamping, stateful operation and on-chip packet
generation functionalities of programmable switches.

In case of link failures, the resulting packet loss leads to the increase in the flow
completion times (FCTs). The key reason for this is that, by default, the packet loss
detection as well as recovery is performed in an end-to-end manner. With an end-to-end
approach, the packet loss recovery incurs a delay of at least 1 round-trip time (RTT).
Also, since an end-to-end approach typically uses a sequence number based scheme to
detect packet loss, it fails to quickly detect the loss of the last (tail) packet of a flow
and relies on an expensive retransmission timeout (RTO) which significantly impacts the
FCT. Furthermore, an end-to-end approach cannot distinguish between a corruption and
a link failure packet loss. As a result, in an end-to-end approach, any packet loss gets
treated as a congestion loss leading to reduction in the sending rate of the transport-level
sender and thereby increasing the FCT. The key insight behind the in-network approach
adopted by both SQR and LinkGuardian is to mask the packet loss due to link failure
events from the end-host transport by performing in-network packet loss recovery. By
doing so, we can prevent the increase in FCT due to link failures by avoiding all the
above drawbacks of an end-to-end recovery. By operating the detection scheme locally
at a network link, SQR and LinkGuardian are able to precisely and quickly (at hardware
speeds) detect the packet loss due to link failure events without requiring an expensive
RTO. Also, since the packet loss recovery is performed in-network and at hardware
speeds, the recovery delay is less than 1 RTT. This in-network packet loss detection
and recovery is enabled by precise timestamping, packet cloning, stateful operation and

on-chip packet generation functionalities of programmable switches.

12 Introduction

1.3 Summary of Thesis Contributions

In the following subsections, we provide a brief overview of our contributions.

1.3.1 BurstRadar

As discussed in §1.1.1 unpredictable congestion events (microbursts) can affect FCTs in
datacenter networks by causing increased latency, jitter and packet loss. To address this
problem, we first need to be able to accurately detect the occurrence of these microbursts
and identify the contributing flows. However, it is hard to do so since microbursts occur
unpredictably and last only for 10’s or 100’s of us. This is further exacerbated by the
fact that, when microbursts occur, the telemetry information needs to be captured at
full link speeds while the link speeds in modern datacenter networks are ever-increasing
(up to 800 Gbps as of today [78]).

Our system, called BurstRadar, is designed to run entirely in the switch dataplane.
Higher link speeds are correspondingly supported by faster switch dataplanes and there-
fore BurstRadar’s design and implementation is agnostic to the link speeds. Further, for
efficiently capturing the unpredictable microbursts, our key insight is that microbursts
are localized to a port’s egress queue. This makes all the information required for de-
tecting and characterizing a microburst available together on a single switch. Unlike
the in-band network telemetry approach [77, 98], by detecting a microburst directly on
the switch where it happens, BurstRadar can avoid the computations and delays arising
from having to correlate monitoring information from different points in the network.
BurstRadar uses a Snapshot algorithm to capture information of the packets involved
in a microburst. It then generates on-demand courier packets for transporting this
information together.

We have implemented BurstRadar on an Intel Tofino [139] switch and evaluated it on

a multi-gigabit hardware testbed using utilization burst distributions from Facebook’s

1.3 Summary of Thesis Contributions 13

production network [188]. Our results show that even with microbursts occurring as
frequently as every 200 us, BurstRadar processes 10times less telemetry information
compared to existing solutions [77, 111], while providing all information to fully charac-
terize microbursts and identify the contributing flows. BurstRadar captures telemetry
information for all packets contributing to microbursts, even with bursts occurring si-
multaneously on multiple egress ports, while consuming very few resources in the switch
dataplane.

Through the design and implementation of BurstRadar, we demonstrate that pro-
grammable dataplanes can be used to detect microbursts more efficiently by capturing

the telemetry information of only the packets involved in microbursts.

1.3.2 SQR

As discussed in §1.1.2, fail-stop link failures cause packet loss which can increases the
FCTs. Existing management techniques for fail-stop link failure involve detecting a link
failure and redirecting traffic on an alternative backup path. However, these techniques
cannot keep the tail FCTs low under link failures because they cannot completely elimi-
nate packet loss during the failure detection and route reconfiguration. As a result, loss
recovery is required to be done by end-hosts which can increase the FCTs by several
fold. We observe that to completely mask the effect of packet loss and the resulting
long recovery delay, the network has to be responsible for packet loss recovery, instead
of relying on end-to-end recovery. Our system, called Shared Queue Ring (SQR), is
an on-switch mechanism that completely eliminates packet loss during link failures by
diverting the affected flows seamlessly to alternative paths. In SQR, our key idea is that
by estimating the upper bound on the link failure detection and the network reconfigu-
ration delay, the switch dataplane can cache a copy of the recently sent packets for this
duration. Then, in the event of a link failure, we can avoid packet loss by retransmit-

ting the cached copy of these previously transmitted packets on the alternative backup

14 Introduction

path. We have implemented SQR on an Intel Tofino switch using the P4 programming
language. Our evaluation on a hardware testbed shows that SQR can completely mask
link failures and reduce tail FCT by up to 4 orders of magnitude for latency-sensitive
workloads.

While caching packets on the switch is an obvious idea, it is not straightforward
to achieve and was not feasible until now. The significant reduction in route recovery
times and increase in on-switch packet buffer sizes have made it feasible, while our
design, implementation and evaluation of SQR demonstrates that it is both effective and
practical. Our work suggests that on-switch packet caching would be a useful primitive

for future switch ASICs.

1.3.3 LinkGuardian

While SQR helps eliminate packet loss during fail-stop link failures, it does not help with
gray link failures since the link remains “up” but still drops packets due to corruption.
Packet corruption loss is a serious problem in datacenter networks. A large-scale study
by Microsoft reported that the number of packets lost due to corruption is comparable
to those lost due to congestion [192]. Packet corruption loss is different than congestion
packet loss because it does not go away even when the end hosts reduce their transmission
rates. Unless mitigated, packet corruption will continue to cause degradation to appli-
cation performance and affect a cloud provider’s SLAs (Service Level Agreements) [189]
by impacting both latency-sensitive and throughput-sensitive applications.

Previous attempts to mitigate the impact of packet corruption loss seek to avoid
the faulty links by routing around them, at the cost of reduced link capacities and
disruption to the rest of the network. In this thesis, we investigate the feasibility and
tradeoffs of the classical loss recovery strategy of link-local retransmissions in the context
of datacenter networks. Through the design and implementation of LinkGuardian, we

show that it is feasible to perform ordered link-local recovery of corruption packet loss on

1.3 Summary of Thesis Contributions 15

today’s high-speed datacenter links thereby making the end hosts completely oblivious to
corruption packet loss. LinkGuardian is designed as a dataplane-based protocol between
two neighboring switches that are connected by a link with gray failure. The sending
switch makes a copy of the recently sent packets and buffers them for potential future
retransmission. The two switches run a protocol in the dataplane to detect corruption
packet loss, if any. In case of a loss, the sending switch retransmits the lost packet.
The receiving switch in the meantime buffers the out-of-order packets and transmits
them ahead “in order” once it receives the retransmitted copy of the lost packet. Since
flows in today’s datacenter networks are mostly short and use TCP, we found that even
out-of-order retransmission by LinkGuardian can be effective in mitigating the impact
of corruption packet loss.

LinkGuardian is implemented using dataplane-programmable switches and is amenable
to incremental deployment. For deployment, we propose a combined LinkGuardian +
CorrOpt [192] solution to efficiently manage link corruption in large-scale modern data-
center networks. CorrOpt [192] is the state-of-the-art solution that disables corrupting
links subject to network capacity constraints.

Our evaluation on a hardware testbed shows that: (i) For a 100G link with a loss
rate of 1073, LinkGuardian can reduce the loss rate by up to 6 orders of magnitude while
incurring only a 9% reduction in the link’s effective link speed; and (ii) LinkGuardian
improves the 99.9*" percentile FCT for TCP and RDMA by 18x and 160x respectively by
handling tail packet losses at sub-RTT timescales. Using large-scale simulations, we also
compared the combined LinkGuardian + CorrOpt [192] solution with vanilla CorrOpt.
Our results show that the combined solution reduces the total network-wide packet loss
rate by at least 4 orders of magnitude and also allows network operators to operate at
higher capacity constraints which were not possible before.

Overall, we believe that we have made a strong case that link-local retransmission is

both practical and effective for modern datacenter networks.

16 Introduction

1.4 Thesis Structure

The rest of this thesis is structured as follows. Related work is reviewed in Chapter 2.
We present the background, motivation, design and evaluation of BurstRadar and SQR
in Chapters 3 and 4 respectively. In Chapter 5, we cover LinkGuardian in full details.

Finally, in Chapter 6, we discuss the future directions and conclude this thesis.

Chapter

Related Work

As described in Section 1.1, the two main causes for increase in tail FCTs include con-
gestion events and link failure events. In this chapter, we therefore review the related

work in these two broad categories.

2.1 Handling Congestion Events

As shown in Figure 1.2, congestion events that lead to increase in tail FCTs can be of
two types - (i) systematic congestion events that are caused by the design of end-host
congestion control, on-switch AQMs, and /or load-balancing; and (ii) transient congestion
events that are caused by unanticipated complex interactions between the flows in the
network.

There is a large body of work towards addressing high tail FCTs due to systematic
congestion events. This is a well understood area and here we provide a high-level sum-
mary of the most relevant works. DCTCP [8] and HULL [9] propose improvements to
TCP in order to reduce queue occupancy in datacenter networks. D3 [180], D2TCP [173],
and PDQ [87] belong to the category of protocols that take into account end-host spec-
ified deadlines for completion of the flows. PIAS [17], QJUMP [76] and pFabric [10] use

18 Related Work

strict priority queue scheduling in combination with per-flow priority specified by end-
host applications. pFabric also requires an unconventional AQM where a high priority
incoming packet could replace a low priority packet in the switch buffer. pHost [69],
NDP [83], Homa [134] and ExpressPass [43] use receiver or credit-based scheduling and
priorities. HPCC [119], DCQCN [190], XCP [108] and RCP [54] use an explicit conges-
tion feedback. Timely [131] use one-way delay as a congestion signal. Swift [115] handles
congestion both in the network as well as at the end host. Load balancing schemes such
as CONGA [7] and HULA [109] also help avoid systematic congestion and keep the tail
FCTs bounded. AQMs such as Approximate Fair Queuing [161] help to prevent long
flows from increasing the FCTs of short flows. However, scheduling itself does not reduce
the overall occupancy of the shared buffers on the switches. Buffers can still fill and
cause packet loss thereby affecting the FCTs [74].

Almost all of the above proposals operate under certain assumptions about the oper-
ating environment and therefore can handle any systematic congestion events. However,
as described in Section 1.1.1, despite of the significant prior work, microbursts can still
occur when the design assumptions of these schemes do not hold in practice or when
there are complex unanticipated interactions between the flows. Therefore, what is not
addressed well in the literature is the increase in tail FCTs due to non-systematic tran-
sient congestion events i.e. microbursts. As explained in Section 1.1.1, it is not possible
to completely prevent the occurrence of microbursts as they occur due to complex unan-
ticipated interactions of the different flows in the network. What is therefore needed is
a feedback loop as shown in Figure 1.1. Any transient congestion events occurring in
the network not only need to be detected, but the relevant telemetry information also
needs to be collected so as to identify the exact cause of the microburst. This informa-
tion is necessary to take appropriate corrective action and prevent future occurrence of
microbursts due to the same cause in the future. In the following subsection, we cover

in details the existing literature on detecting microbursts and collecting the relevant

2.1 Handling Congestion Events 19

telemetry information.

2.1.1 Monitoring Microbursts

Commercial solutions such as Cisco’s Nexus 5600 and 6000 series switches, as well as
Arista’s 7150S series switches can detect the occurrence of microbursts but provide no
details about the cause [45, 138]. Learning the cause requires traffic mirroring and data
correlation across different monitoring data streams [45]. In contrast, BurstRadar pro-
vides a full snapshot of telemetry information about the packets involved in a microburst.
With this information, we can identify the contributing flow(s) without the significant
costs associated with data correlation and traffic mirroring. Marple [137] is another
network monitoring system that proposes augmenting dataplane programmability with
a custom key-value store hardware primitive. It presents a microburst detection case
study in which microbursts are assumed to occur at regular intervals. The proposed
approach will not work in practice because microbursts do not occur at regular inter-
vals [188]. BurstRadar does not make any such assumption about the arrival pattern of
microbursts. It may be possible to orchestrate BurstRadar’s techniques in the Marple
framework with some modifications. However, unlike BurstRadar, the hardware primi-
tives required by Marple are not available on today’s programmable switching ASICs.
In-band Telemetry (INT). In-band Telemetry (INT) [77, 111] is a network debug-
ging system that is built on top of programmable dataplanes. It is the state-of-the-art
solution that can be deployed to monitor microbursts or non-systematic transient con-
gestion events. Later in Chapter 3, we compare our solution BurstRadar with INT.
Figure 2.1, shows an example operation of INT. Consider flow 1 in Figure 2.1 that tra-
verses switches 1, 3, 4, and 5. If INT is enabled for flow 1, then when a packet from
flow 1 (P1 in Figure 2.1) enters the network, the first switch called the “INT Source”
(switch 1) adds an INT header into the packet (see green header 1 attached to P1 in

Figure 2.1). This telemetry header consists of information such as the timestamps from

20 Related Work

0 =) ANGIYEICS g,

Serverl Telemetry

{ ﬂ } Report

................................. »

IP1] — | 1 5
INT Source INT Sink
[P2] — | | — [F3]
.. >

' { 6]4]3]2] }Te;\eme:try
ANBIVECS e epo

Server2

Figure 2.1: Example operation of In-band Network Telemetry (INT) to monitor mi-
crobursts

switch 1 corresponding to when P1 arrived and left the switch, the enqueue/dequeue
queue depth (congestion) experienced by P1, etc. All the subsequent switches add simi-
lar information to P1. Finally, when P1 is processed by the last switch called the “INT
Sink”, all the INT telemetry headers are removed from the packet and sent to an ana-
lytics server for processing. The packet then exits the network in the same form as it
entered the network without any INT headers. When deployed across a large datacenter
network, the INT Sink switches export telemetry data to multiple different analytics
servers for load balancing. Now consider a scenario, where a burst flow (flow 2) enters
the network and causes a transient congestion event (microburst) at switch 3. Now, to
use INT to detect that a microburst occurred at switch 3 and it occurred due to the
bursty flow 2, we would also need INT to be enabled on flow 2. Thereafter, we would
need to correlate the INT telemetry information from both the flows in the following
manner. When packets from flow 1 show that they experienced high queuing delay on
switch 3, we would extract the switch 3 timestamps from these specific packets. Then
we would check the INT information inside packets from other flows (in this case flow
2) to see if any packets from other flows were at switch 3 around the same time as the

packets from flow 1. In this case, we would find that the packets from flow 2 (processed

2.1 Handling Congestion Events 21

at analytics server 2) were at switch 3 and were the cause for the microburst.

While Figure 2.1 showed a simple example, in practice, however, due to the complex
interactions of datacenter network traffic, microbursts are unpredictable [188] and can
occur at any time involving any flows. What this means is that, in order to detect
and characterize microbursts reliably, INT would need to be enabled for all flows at all
times. The INT analytics servers would then need to process telemetry information for
every single packet in the network, even though only a small number of these packets are
involved in the microbursts. Further, as we saw in the example above, expensive data
correlation across analytics servers would then be required to reconstruct a microburst
event. Furthermore, enabling INT on all flows would consume 10% additional band-
width! in the entire network due to the extra INT headers. BurstRadar, on the other
hand, captures telemetry information only for the packets involved in microbursts, does
not require expensive data correlation and is non-intrusive to production traffic since it
operates out-of-band.

Chen et al. recently proposed Snappy, a technique to estimate the contents of a mi-
croburst queue and identify the culprit (heavy) flows in the dataplane [39]. Snappy’s
detection of culprit flows is however probabilistic in nature and the probability of iden-
tifying all the culprit flows (Recall) increases with the number of switch pipeline stages
used by Snappy. Snappy is expected to require more than 128 stages for achieving a

decent “recall” in practice?

. Today’s programmable switching ASICs do not currently
support such a large number of pipeline stages and we believe that they are unlikely to be
available in the near future due to cost concerns. Snappy further requires division and
rounding operations which are not currently supported on high-speed programmable

switching ASICs. BurstRadar, on the other hand, requires only a modest amount of

resources (§3.3.3) and can thus be implemented on programmable switches available

'For a 5-hop diameter network, INT requires extra 54 bytes per packet [98] which is 10% extra for a
median packet size of 500 bytes [23].

2Real-world microbursts queue lengths are less than 250 KB at the 90th percentile [188]. This requires
Snappy to use smaller “window” sizes to better approximate the queue boundaries.

22 Related Work

today. The microburst information exported by BurstRadar goes beyond accurate cul-
prit detection and provides a full characterization of microbursts, which is important to
network operators for network planning. While Snappy’s approach of detecting culprit
flows in the dataplane is more suited for automatic microburst mitigation, further work
is required to make it practical.

NetSight [82] employs mirroring or packet cloning for exporting telemetry informa-
tion for every single packet traversing a switch. Since packets involved in microbursts
form a very small fraction of the overall packets, such an approach is grossly inefficient
and infeasible for large datacenter networks. Everflow [191] uses “match and mirror”
to selectively trace specific packets across a large datacenter network. However, since
microbursts are unpredictable [188], identifying the specific packets involved in a mi-
croburst and exporting the corresponding queuing information requires going beyond
the stateless “match and mirror” operation.

There have been systems proposed for monitoring a different class of microbursts,
called link wutilization microbursts [171, 188]. Link utilization microbursts are inter-
vals where the utilization of a link exceeds a certain threshold, and unlike queuing
microbursts, might not result in queuing. These systems [171, 188] can only detect link
utilization microbursts at the time-scale of tens of microseconds. BurstRadar instead
monitors queuing microbursts at a sub-microsecond resolution. It remains a future work

to extend BurstRadar to monitor link utilization microbursts.

2.2 Handling Link Failure Events

As shown in Figure 1.2, other than the congestion events, a major cause for the increase
in tail FCTs are the link failure events. Link failure events are broadly of two types —

fail-stop and gray — and in this section we review the literature for both of them.

2.2 Handling Link Failure Events 23

2.2.1 Handling Fail-stop Link Failures

The related work for handling fail-stop link failures can be further categorized into two
categories — (i) Route Recovery: this includes the works that find an alternative
route for traffic that was previously carried by the failed link, and (ii) Packet Loss
Recovery: which includes the works related to recovering the packets that were lost
from the time the original link failed and the new alternative route was established.

Route Recovery. Among existing route recovery schemes, many attempt to achieve
fast re-routing for multi-path datacenter topologies. Failure carrying packets [116] are
proposed to avoid route convergence delay by carrying failed link(s) information inside
data packets to notify other nodes. Fast Reroute (FRR) [147] used in MPLS networks can
provide recovery in less than 50 ms during a link/node failure. Packet Re-cycling [123]
takes advantage of cycle in the network topology where routers implement a cyclic rout-
ing table. SPIDER [35] and Blink [86] maintain a pre-computed backup next hop in
the switch. Sedar et al. [158] implement the fast reroute primitive based on known port
status in programmable data planes and in Data-Driven Connectivity [121] dataplane
packets are used to ensure routing connectivity. Flowlet switching [104] based load
balancing schemes such as CONGA [7] and HULA [109] are an implicit form of fast re-
routing schemes since they avoid a failed path for routing subsequent flowlets. Another
group of route recovery schemes consist of multi-path network architectures that allow
fault-tolerance [3, 5, 75, 79, 81, 165]. Notably, F10 [122] designs an AB fat-tree and a
centralized rerouting protocol to support downlink recovery.

ShareBackup: ShareBackup [181] is the state-of-the-art solution for route recovery.
Later in Chapter 4, we evaluate our proposed solution SQR in combination with Share-
Backup. The basic idea of ShareBackup is to have a shared pool of backup switches
spread across the entire datacenter network. These backup switches essentially form a

backup network that provides on-demand alternative paths when existing paths fail due

24 Related Work

CDF
COCO0O00O00O00
oL WPUIION®DO =
T

5 10 15 20 25 30 35
TCP CWND Size (MSS segments)

o

Figure 2.2: cwnd size distribution for short flows

to fail-stop link failures. ShareBackup uses optical circuit switches which can dynami-
cally form new backup links on-demand to provide the required backup paths. Whenever
a link faces a fail-stop link failure, ShareBackup reconfigures its pool of optical circuit
switches such that a new alternative link is formed between the two switches who lost the
link between them. ShareBackup takes only about 730 us to reconfigure a backup link
making it the state-of-the-art for route recovery. The main drawback of ShareBackup is
that the delay of 730 us is still not short enough to prevent increase in FCTs for short
flows in today’s high-speed datacenter networks. Figure 2.2 shows the distribution of
the TCP congestion window (cwnd) that we observed while running a latency-sensitive
workload [8] on a network with 10G link speeds. We see that the maximum observed
cwnd size is 32 MSS segments which translates to 46.34 KB. On the other hand, a failure
time of 730 us on a 10G link amounts to 970 KB worth of data transmission. What
this means is that, during the time that ShareBackup performs the route recovery, it is
possible to lose an entire cwnd worth of packets which would cause a TCP retransmission
timeout (RTO) and thereby increase the FCT significantly. SQR is complementary to
existing route recovery schemes as it helps them to avoid packet loss during their route
recovery and link failure detection times.

Packet Loss Recovery. Traditionally, packet loss recovery is left to end-point

transport. However, for short latency-sensitive flows, end-host recovery incurs FCT

2.2 Handling Link Failure Events 25

[1
Do NOT lIJse the Link Use the link

Disable the link Avoid the link (RAIL)

(CorrOpt) T 1
End-to-End Link-local
—
Redundancy ReTx Redundancy ReTx
(RAIL, (TCP, IRN, (Ethernet FEC, (LinkGuardian)
CloudBurst) FUSO) Wharf)

Figure 2.3: Design space for mitigating corruption packet loss due to gray link failures
in datacenter networks.

penalty due to packet loss and timeout before recovering the lost packets (c.f. §4.2).
Alternatively, end-to-end redundancy approaches can be used [37, 176], where the sender
sends duplicate un-ACKed packets on separate paths. However, duplicating packets on
the entire path increases the required network bandwidth. Since datacenter networks
are often oversubscribed [164], this approach may increase network congestion. Instead
of taking up network bandwidth, SQR opportunistically utilizes free packet buffer on the
switch to store the duplicate packets. In addition, the end-to-end redundancy methods
require changes to the end-host TCP stack. To the best of our knowledge, SQR is the
first attempt at in-network packet loss recovery and requires no changes to the end hosts.

Overall, all existing route recovery and packet loss recovery schemes cannot seam-
lessly divert traffic from a failed path to an alternative path. The main reason is that
they do not take into account the inevitable delay and the corresponding packet loss
arising from link failure detection and route reconfiguration. Furthermore, since major-
ity of the flows in datacenter networks are small [23], competing approaches of reducing
route failure time or flowlet-level switching to alternative paths are not able to mitigate

the impact of link failures on short flows. This is precisely the gap that SQR addresses.

2.2.2 Handling Gray Link Failures

In this section, we review the literature related to handling gray link failures. In Fig-

ure 2.3, we lay out the design space for mitigating corruption packet loss due to gray link

26 Related Work

failures. Below we elaborate on each of the different approaches shown in Figure 2.3.

Disabling the faulty links. The most straightforward and common strategy to
deal with corrupting links is not to use them [182, 192]. While this eliminates corruption
packet loss, it also reduces network capacity. A recent study of Microsoft datacenters by
Zhuo et al. showed that under realistic capacity constraints, some 15% of the corrupting
links cannot be disabled [192]. So they proposed to find a subset of corrupting links to
be disabled such that the impact of the remaining corrupting links can be minimized.
The strategy of disabling corrupting links has two limitations: first, since not all cor-
rupting links can be disabled, the remaining corrupting links would continue to cause
packet drops thereby affecting performance SLOs. Second, disabling a link causes dis-
ruption to the rest of the network through packet re-ordering and overall lower network
performance [182, 192] during the time it takes for routing and load-balancing proto-
cols to move traffic away from the disabled link and stabilize the rest of the network.
CorrOpt [192] is the state-of-the-art solution that employs the strategy of disabling the
faulty links. Later in Chapter 5, we propose and evaluate a deployment strategy of our
solution LinkGuardian together with CorrOpt. Therefore, we describe CorrOpt in more
details below.

CorrOpt. The basic idea of CorrOpt is to disable any gray failure (corrupting) links
subject to the capacity constraints of the network. The capacity constraint is specified as
the minimum number of valley free paths from a top-of-rack (ToR) switch to the highest
level (spine) of the network [192]. For example, in Figure 2.4, we show one “pod™ of
Facebook’s state-of-the-art datacenter network [12]. In Figure 2.4, we can see that each
ToR switch has about 192 [(4 fabric switches) x (48 uplinks)] paths to the spine layer.
A capacity constraint of 75% would then mean that every ToR across all pods in the
network must have at least 144 paths to the spine layer at all times. Now suppose one of

the uplinks to the spine layer for fabric switch 1 (link A in Figure 2.4) starts corrupting

3A pod is a unit or building block of modern datacenter networks.

2.2 Handling Link Failure Events 27

48 links 48 links 48 links 48 links

Link A/v

4 fabric
switches

48 top-of-rack (TOR) switches

Figure 2.4: A single pod from Facebook’s state-of-the-art datacenter network. Image
adapted from: Alexey Andreyev, Facebook [12].

packets. In this case, CorrOpt will run its fast checker algorithm which checks whether
any ToR switch’s capacity constraint would be violated if link A is disabled. In this case,
all ToR switches in the pod will lose only 1 path and will still have 191 paths remaining
to the spine layer. Therefore, CorrOpt will disable this link and schedule it for repair. In
the meantime that this link is repaired, suppose the link between ToR switch 1 and fabric
switch 2 (link B) starts corrupting packets. Again, CorrOpt will run its fast checker to
see if capacity constraints are violated for any ToR switch. In this case, disabling link
B will make ToR switch 1 lose another 48 paths to the spine layer as it would be totally
disconnected from fabric switch 2. ToR switch 1 would then remain with only 143 [191
- 48] paths to the spine which violates the capacity constraint. Therefore, CorrOpt will
not disable link B due to capacity constraint violation and the link will continue to
corrupt packets. After a few days, when link A is repaired and enabled, CorrOpt will
run its optimizer algorithm which checks if any of the remaining corrupting links can
be disabled. The goal of the optimizer algorithm is to find a subset of the remaining
corrupting links that can now be disabled such it leads to the maximum reduction in

the network-wide corruption packet loss. In this example, the optimizer algorithm will

28 Related Work

find that since link A is enabled, link B can be now disabled after which ToR switch
1 will have 144 paths to the spine layer and thus it will not be violating the capacity
constraint. Overall, we see that while CorrOpt is effective in disabling corrupting links,
due to the topology structure and the spatial proximity of the corrupting link, there are
often times when CorrOpt fails to disable the corrupting links. During such times, the
corruption packet loss continues to affect application performance thereby affecting the
tail FCTs.

Avoiding the faulty links. Another approach is to avoid corrupting links through
source routing or by using virtual network topologies. RAIL allows latency-sensitive
applications to avoid lossy links by routing using virtual network topologies [193]. How-
ever, in addition to reducing capacity indirectly, it is cumbersome to maintain virtual
network topologies as each new corrupting link could require the forwarding entries on
several hundred switches across the network to be updated. This approach also requires
end-host modifications as applications are required to bind to the appropriate virtual
interface.

End-to-end recovery (redundancy). When using a corrupting link is inevitable
due to a lack of alternative paths or capacity constraints, end-to-end loss recovery be-
comes necessary. This can be achieved through proactive redundancy via using end-to-
end forward error correction (FEC) [186, 193] or packet duplication [176]. However, this
approach adds redundant bytes for all the packets across the entire path and risks wors-
ening congestion in the network. FEC encoding and decoding also add latency. Further,
the required decoding at the receiving end makes it off-limits for supporting one-sided
RDMA operations where no CPU is involved on one end.

End-to-end recovery (retransmission). Another option is to simply ignore cor-
rupting links and leave the recovery to the transport endpoints. However, for short
latency-sensitive flows on high speed networks, the recovery latency of the end-host

transport stack (e.g. TCP) can be much larger than their no-loss flow completion times.

2.2 Handling Link Failure Events 29

It is possible that latency-sensitive flows can recover faster by using NIC-offloaded [13,
132, 163] and /or multipath [38] transport stacks. Further, IRN proposes to use an adap-
tive RTO to reduce the recovery delay in case of tail packet loss [132]. However, the fun-
damental limitation of any end-to-end recovery is that it cannot completely eliminate the
use of retransmission timeouts and therefore the recovery delay remains lower-bounded
by 1RTT.

Link-local recovery (redundancy). While proactive link-local redundancy ap-
proaches like forward error correction (FEC) are similar in spirit to LinkGuardian,
they have several limitations. The Ethernet standards for 25G/100G [90, 91] and
50G /200G /400G [92, 93] specify optional and compulsory FEC at the PHY layer re-
spectively. However, the redundancy parameters are fixed in the standards and cannot
be adjusted according to the current loss rate. Wharf [72] also uses link-local FEC but
at the level of an Ethernet frame (L2). The main drawback of Wharf is that the re-
dundancy is added to all the packets even if the corruption loss rates are very small
(see Figure 5.2). When the effective link capacity of the corrupting link is reduced due
to FEC overhead, Wharf performs meter-based packet dropping to signal reduced link
speed. This will not work well with modern delay-based transport such as TIMELY [131]
or Swift [115] and certainly not with loss-sensitive RDMA. Wharf requires FPGA sup-
port on switches, and it is unclear if the expensive frame-level FEC encoding/decoding
would scale to link speeds of 100G or more.

Link-local recovery (retransmission). Link-level retransmissions is an old idea
for wireless networks [1, 2, 19, 88, 89, 148]. SQR [152] is an algorithm that implements
link-local retransmission in the datacenter network context, but it is designed to recover
packet loss during fail-stop link failures and does not work for corrupting links. Link-
Guardian represents a different and unexplored point in the solution design space. Our
prior workshop paper [99] investigated the potential of this general idea by implementing

a naive out-of-order retransmission mechanism for 10G links. We found that out-of-order

30 Related Work

retransmission can completely mask corruption packet loss only on a 10G link. Because
TCP has a “reordering tolerance” of 3 packets [11, 24]), if the in-network retransmission
can be completed within 3 packet transmissions, then cwnd reduction and end-to-end
recovery can be avoided. Unfortunately, for higher link speeds such as 100G, the retrans-
mission delay is larger than 2 us (see Figure 5.10b) while 3 MTU-sized TCP packets can
be transmitted faster, i.e., within ~370ns. This means that to fully mask the packet loss
and prevent the performance penalty, we need to preserve packet ordering. Furthermore,
our prior work was a work-in-progress and it did not describe a complete solution that:
(i) completely masks the corruption packet loss with in-order retransmission (and is
hence amenable to RDMA); (ii) handles tail packet loss; (iii) handles consecutive packet
loss; (iv) works at high link speeds; and (v) can be deployed effectively on a large-scale
network. Therefore, to the best of our knowledge, LinkGuardian is the first complete
solution for mitigating corruption packet loss in datacenter networks using link-local

retransmission.

Chapter

BurstRadar: Practical Real-time
Microburst Monitoring for Datacenter

Networks

As described in Section 1.1, congestion events are one of the two main causes for increase
in tail FCTs. While significant work has been done to address systematic congestion
events, microbursts — which are transient congestion events — can still occur due to lack
of tuning and/or complex unanticipated interactions between the flows. Therefore, as
argued in section 1.1.1, what is required but is missing from the prior work is a way to
continuously and efficiently monitor any microbursts happening in the network.

We address this gap in the literature through the design and implementation of
BurstRadar. In this chapter, we first revisit the motivation for monitoring microbursts
in the general context of datacenter networking (Section 3.1) before diving into the
details of the system design (Section 3.2) and then presenting the evaluation results

(Section 3.3). Finally, we conclude the chapter (Section 3.4).

32 BurstRadar

3.1 Introduction

Over the last decade, the performance of datacenter networks has improved signifi-
cantly [164]. However, service-level guarantees in terms of flow completion times (FCTs)
still continues to be a challenging problem as datacenter bandwidths increase and appli-
cations become more sophisticated [172]. To achieve more 9’s in service-level guarantees,
we need to ensure that the tail FCTs remain small and bounded even under unpredictable
congestion events. As discussed in §1.1.1, the key to mitigate unpredictable congestion
events is to first achieve greater visibility into the network. Modern datacenter net-
works operate at high-speeds (>10 Gbps) and have ultra-low end-to-end latency (~10’s
of us) [60]. As a result, even small amounts of unpredictable queuing, called microbursts,
that occur for short periods of time can have a significant impact on application perfor-
mance and thereby revenue [8].

Microbursts are events of intermittent congestion that last for 10’s or 100’s of us.
They increase latency and cause network jitter and packet loss in datacenter networks [160].
Common causes include TCP Incast scenarios [8], bursty UDP traffic from an offending
flow, as well as TCP segment offloading or application-level batching [107]. The perfor-
mance degradation arising from microbursts is becoming more common today because
link speeds are moving beyond 10 Gbps while switch buffers remain shallow. Tradi-
tionally, the impact of microbursts has been greatest for high frequency trading (HFT)
applications with reported profit differentials of $100 million per year due to latency
advantage of just 1ms [125]. However, today with low end-to-end latency in datacen-
ters and high SLA requirements by applications, the impact of microbursts is no longer
limited to such niche applications. Popular webservices like LinkedIn are reported to
have experienced high application latency due to microbursts [103]. Consider an ex-
ample scenario similar to one reported at LinkedIn [103], where the roll out of a new

application service starts to cause microbursts. To address this problem, we first need

3.1 Introduction 33

to be able to accurately detect the occurrence of these microbursts and identify the cul-
prit service/application who added a large number of packets in quick succession to the
microburst’s queue build up. Once the culprit service is identified, the burstiness of the
flows from that service could be fixed by introducing packet pacing or by other means.
Notice that once the cause is determined, in most cases, the fix for microbursts is usually
not very difficult. However, the key challenge lies in detecting the occurrence of these
microbursts and identifying the culprit flows. Therefore, in this thesis, we focus on the
detection of microbursts and collection of the required telemetry information that would
allow finding the root cause(s).

The extremely low timescales make it impossible for traditional sampling-based tech-
niques such as Netflow [47] and sFlow [150] to even detect the occurrence of microbursts.
Some existing commercial solutions [45, 102, 138] are able to detect microbursts, but pro-
vide no information about the cause. Recent advances in programmable dataplanes [27]
and dataplane telemetry have led to proposals for In-Band Telemetry (INT) [77, 111]
that embed telemetry information into each packet and enable debugging for several net-
work issues including microbursts. However, since microbursts are unpredictable [188],
it is wasteful to use INT to monitor them as it would require the telemetry information
for every single packet in the network to be captured and processed, while only a small
number of packets contribute to microbursts. Basat et al. [22] show that INT’s approach
of embedding telemetry information into the packets can lead to 25% increase in average
FCTs since the increase in packet size worsens congestion queue build-ups.

In this thesis, we demonstrate that programmable dataplanes can be used to detect
microbursts more efficiently by capturing the telemetry information of only the packets
involved in microbursts. Our system, called BurstRadar, builds on the out-of-band
approach for exporting telemetry information [82]. Our key insight is that microbursts
are localized to a port’s egress queue. This makes all the information required for

detecting and characterizing a microburst available together on a single switch. Unlike

34 BurstRadar

an INT-based approach [77], by detecting a microburst directly on the switch where it
happens, we can avoid the computations and delays arising from having to correlate
monitoring information from different points in the network. BurstRadar’s key idea is
to take a “snapshot” of all the packets in a queue at every time instant when the queue
grows larger than an operator-specified threshold and export this snapshot information
out of the switch dataplane for root cause analysis. The “snapshot” contains the header
information of all the packets at that instant in the queue, their arrival and departure
times from the queue, as well as the queue size when the packets were enqueued or
dequeued from the queue. BurstRadar uses a Snapshot algorithm (§3.2.1) that runs
on a per-packet basis in the egress pipeline of the switch dataplane to capture such
queue snapshots i.e. precisely identify the packets belonging to the queue snapshots.
It then uses egress packet cloning (§3.2.2) to generate on-demand courier packets for
transporting this information together.

While our approach is relatively straightforward given existing programmable dat-
aplane architectures, we made three observations from our design and implementation.
First, we need a strategy to temporarily store telemetry information before it can be
transferred to the courier packets. Second, there is a sizable delay in the generation of
courier packets and it depends on packet size, among other factors. Third, it is possible
that if there are multiple simultaneous microbursts on different egress ports, telemetry
information for some packets involved might be lost. BurstRadar provisions the temporal
storage by implementing a ring buffer using the transactional stateful memory available
in the dataplane (§3.2.3). We then handle the issues of courier packet delays and mul-
tiple simultaneous microbursts by sizing the ring buffer appropriately (§3.2.3). Overall,
the complete BurstRadar solution works as follows: The Snapshot algorithm first iden-
tifies the packets belonging to queue snapshots and for each such packet, it writes the
telemetry information to the ring buffer while also signaling the courier packet generator

to generate a courier packet. After a small delay, when the courier packet is generated,

3.2 System Design 35

the courier packet reads the telemetry information from the ring buffer and transports
it to a cluster of monitoring servers for root cause analysis.

We have implemented BurstRadar on a Barefoot Tofino [139] switch and evaluated
it on a multi-gigabit hardware testbed using utilization burst distributions from Face-
book’s production network [188]. Our results show that even with microbursts occurring
as frequently as every 200 us, BurstRadar processes 10 times less telemetry information
compared to INT [77, 111}, while providing all information to fully characterize mi-
crobursts and identify contributing flows. BurstRadar captures telemetry information
for all packets contributing to microbursts, even with bursts occurring simultaneously on
multiple egress ports. Further, it achieves real-time detection of microbursts at multi-

gigabit link speeds.

3.2 System Design

Our key idea is to first detect a microburst in the dataplane and then capture a snapshot
of telemetry information of all the involved packets. This information allows queue
composition analysis to identify the culprit flow(s), and burst profiling to know burst
characteristics such as duration, queue build-up/drain rates, etc. Detecting a microburst
is relatively easy with queuing telemetry information provided by modern programmable
switching ASICs [139]. However, taking a snapshot of all the packets involved in the
microburst and further exporting this information in an out-of-band manner is non-
trivial for three reasons. First, the switching ASIC’s “Buffer and Queuing Engine” (BQE)
does not provide any support to peek into the contents of any queue, and so the snapshot
needs to be captured from outside the BQE. Second, any logic in the programmable
pipelines outside the BQE can only execute on a per-packet basis. Third, exporting
the snapshot information requires on-demand generation of new courier packets in the

dataplane and transferring of snapshot information to these courier packets. These

36 BurstRadar

¢ clone_e2e
Ingress Buffer & — .| E Egress Egress
gress 1, Queuing [, EOress L} =9gress 1 j £9
Processing Enai Parser Pipeline | [Deparser
ngme/:II

Egress Port Queues

Figure 3.1: General architecture of a programmable switching ASIC [49]

challenges exist for today’s pipelined-architecture switches which are commonly used in
datacenter networks for their low-latency performance [27, 117, 139].

Figure 3.1 shows the general architecture of a programmable switching ASIC. BurstRadar
runs in the egress pipeline of each switch in the network. It consists of three functional
components: (i) Snapshot Algorithm, (ii) Courier Packet Generation, and (iii) Ring
Buffer. The Snapshot algorithm first determines the packets that are involved in a
queuing microburst and marks them. The marking is done via a metadata header and
does not modify the original packet. For each marked packet, a courier packet is gen-
erated to transport the marked packet’s telemetry information via the switch’s mirror
port. The ring buffer provides temporary storage to facilitate the transfer of telemetry
information from the marked packets to the courier packets. The telemetry information
for each marked packet consists of the packet 5-tuple, the ingress and egress timestamps,
and the queue depths at the time of enqueue and dequeue (engQdepth and deqQdepth).
Courier packets are processed at the monitoring servers connected to the mirror port
infrastructure. In the following subsections, we describe these three components in more

detail.

3.2.1 Snapshot Algorithm

While BurstRadar can monitor all queuing microburst events, small queuing events
that cause negligible increase in application latency are generally not of interest to

the operator. Therefore, BurstRadar allows the operator to specify a latency-increase

3.2 System Design 37

Queue Snapshot

1] [4]3[2] _l6]5]4[3]
t=0 t=1 t=2
|6]5]4] 6/5] 7]6]
t=3 t=4 t=5

Figure 3.2: Evolution of an example queuing microburst at different instants in time

threshold (specified as a percentage). For example, if the network’s no-queuing RTT is
50 us, then the operator may specify a threshold of 30% which translates to a minimum
latency increase of 15 us. BurstRadar would then ignore any microbursts that incur
less than 15 us of delay. The threshold is set on a per-switch basis and the exact value
depends on the maximum delay that can be tolerated by the deployed applications. For
latency-sensitive applications like web services, the threshold could be set to a small
fraction of the RTT. On the other hand, it could be a few multiples of the RTT for
throughput-intensive applications like Hadoop.

We define a queue snapshot to be the set of packets present in the queue when the
queue-induced delay is above the operator-specified threshold. Figure 3.2 shows the
evolution of a toy queuing microburst at different instants in time. At time instant
t=1, the queue length exceeds the threshold (dotted line). Thus the snapshot of the
queue at this instant consists of packets {2,3,4}. Similarly at t=2, the queue snapshot
consists of packets {3,4,5,6}. At t=3, the queue starts to drain, but we still have a queue
snapshot consisting of packets {4,5,6}. At t=4 and beyond, the queue length falls below
the threshold and we stop taking snapshots. In other words, a single queuing microburst
event consists of multiple overlapping queue snapshots. Note that at t=5, an additional
packet #7 enters the queue but is not a part of any of the queue snapshots.

Since egress port queues are a part of the BQE (refer Figure 3.1), it would be easy to

capture queue snapshots inside the BQE. However, the BQE in today’s programmable

38 BurstRadar

Algorithm 1: Queue Snapshot Algorithm
Input: threshold
Initialization: bytesRemaining = 0;

1 foreach pkt in egressPipeline do

2 if deqQdepth > threshold then
3 bytesRemaining = deqQdepth — size(pkt);
4 mark(pkt);
5 else
6 if bytesRemaining > 0 then
7 bytesRemaining = bytesRemaining — size(pkt);
8 mark(pkt);
end

switching ASICs doesn’t provide any such functionality, but provides the queuing teleme-
try information (enqQdepth and deqQdepth) for each packet leaving the BQE. The
engQdepth refers to the queue size at the time instant when the packet is enqueued,
and similarly the deqQdepth refers to the queue size when the packet is dequeued. Our
Snapshot algorithm uses this telemetry information and runs outside the BQE in the
egress pipeline.

Since the egress pipeline follows a per-packet execution model, the Snapshot algo-
rithm (Algorithm 1) needs to decide (mark) whether a packet entering the egress pipeline
belongs to any queue snapshot or not. For the example microburst in Figure 3.2, we
need to mark the packets #2 to #6, but not #7. To decide if a packet should be marked,
we consider the queue length when a packet is dequeued (deqQdepth). There are two
possible cases: (i) The deqQdepth is greater than the threshold, or (ii) The deqQdepth
is less than or equal to the threshold. In the former, it is clear that the packet belongs to
at least one of the queue snapshots. For example in Figure 3.2, packet #2’s deqQdepth
is greater than the threshold and thus packet #2 would be marked at t=1. Similarly,
packets #3 and #4 would be marked at t=3 and t=4 respectively. At each of these
time instants, the Snapshot algorithm also maintains and updates the bytesRemaining

in the queue (line 3). For example, at t=3, the bytesRemaining would be set to the

3.2 System Design 39

total bytes of packets #5 and #6. In the latter case when the reported deqQdepth is less
than or equal to the threshold, only the packets equivalent of bytesRemaining would
be marked (lines 6-8). In the example, packets #5 and #6 would be marked due to
bytesRemaining set by packet #4; but packet #7 would not be marked. Essentially,
when a queue drains below the threshold, bytesRemaining helps to track and mark the
packets (#5 and #6) that were part of the last queue snapshot (snapshot at t=3).

The telemetry information for these marked packets is then stored in a ring buffer
(§3.2.3) and the courier packet generation logic (§3.2.2) is also signaled to generate a

courier packet to transport the telemetry information to a cluster of monitoring servers.

3.2.2 Courier Packet Generation

BurstRadar generates a courier packet for each marked packet on demand. To do this,
BurstRadar uses the clone egress to egress or clone_e2e primitive provided by pro-
grammable switching ASICs [49]. The clone_e2e primitive makes a copy of the exiting
regular packet and places it in the egress queue of the mirror port (see Figure 3.1). The

courier packet is also appropriately truncated to remove the original payload.

3.2.3 Ring Buffer

A ring buffer is designed using the transactional stateful memory available in the egress
pipeline and exposed by the P4 programming language [26] as register arrays. The ring
buffer acts as temporary storage for the telemetry information of marked packets until it
can be copied into the courier packets. We use two circular pointers — write pointer and
read pointer — for pointing to the next index of the register arrays to write or read. The
Snapshot algorithm uses the write pointer to write to the ring buffer while the courier
packets uses the read pointer to read from the ring buffer. Since the Snapshot algorithm
first writes to the ring buffer before signaling the generation of the corresponding courier

packet, the read pointer always trails the write pointer.

40 BurstRadar

Ring Buffer Sizing. We found that the first read from the ring buffer by a courier
packet happens only after a cloning delay. During a microburst, the interval between
the first and second writes to the ring buffer is mainly determined by the serialization
delay of the first packet. If the serialization delay of the first packet is smaller than the
cloning delay, the second packet in the microburst will write to the ring buffer before the
first courier packet performs the first read. Therefore, the ring buffer needs to be large
enough to store the information for the marked packets passing through the pipeline
before the first read by the courier packets.

Figure 3.3 compares the cloning delay to the serialization delay (at 10 Gbps link
speed) for packets of different sizes. For 64 byte packets, the cloning delay (270ns) is
more than five times the serialization delay (51.20ns). This means that in the worst case
of having all 64 byte packets in a microburst, more than five writes would be made to
the ring buffer before the first read happens. For our ASIC implementation, we found
that factors' other than the packet size also affect the cloning delay. Accordingly, we
found (by measurement) the required minimum ring buffer sizes for 10 Gbps and 25 Gbps
link speeds to be 26 entries and 32 entries, respectively. Since the size of each entry is
29 bytes, these requirements translate to 754 bytes and 928 bytes, which are very small
given the SRAM memory sizes (up to 100 MB) in today’s ASICs [129].

Concurrent Microbursts. Since the egress pipeline is shared among the ports, it
serves the egress port queues in a round-robin manner. Therefore, if multiple egress ports
simultaneously experience microbursts, in one scheduling round of the egress pipeline,
there would be multiple writes to the ring buffer while only a single read due to a single
mirror port. This seems to suggest that a very large ring buffer might be required to
handle multiple concurrent microbursts. However, as we show in §3.3.2, due to sta-
tistical multiplexing, a ring buffer with 1k entries is sufficient in practice to handle 10

simultaneous microbursts without any overwrites.

nvestigation of all factors will be addressed in a separate measurement study.

3.2 System Design 41

10000 71— — 71— 11—
: Cloning Delay —+—
Serialization Delay (10 Gbps) —*—
1000 | E
g []
(0]
=
|_
100 =
10\\\\\\\\\\\\\\\\\\\‘\\\\‘\\

0 200 400 600 800 1000 1200 1400 1600
Packet Size (bytes)

Figure 3.3: Cloning and serialization delay for packets of different sizes

3.2.4 Implementation

BurstRadar can be implemented with small modifications to fixed function switching
ASICs or programmed on modern programmable switching ASICs [36, 95, 139]. We
implemented BurstRadar on a Barefoot Tofino switch [139] in about 550 lines of P4 [26]
code. The operator-specified latency-increase threshold is stored in a register in the
dataplane and can be dynamically configured by the control plane. The Snapshot al-
gorithm and the ring buffer are implemented using a sequence of exact match-action
tables. Arithmetic operations are facilitated by stateful ALUs.

Switching ASICs (fixed or programmable) provision memory for buffered packets
using fixed size memory buckets or segments [138]. Therefore, the reported deqQdepth is
expressed in terms of number of segments. Snapshot algorithm converts the deqQdepth
from segments to bytes to compute bytesRemaining (line 3 in Algorithm 1). This
conversion results in excess bytesRemaining compared to the actual remaining bytes,
causing BurstRadar to mark extra packets towards the tail-end (lines 6-8 in Algorithm 1)

of a microburst. For example, if the segment size is 160 bytes and the queue consists of

42 BurstRadar

Receiver

100%|- ~

Figure 3.4: Testbed setup

a single 161 byte packet, then the reported deqQdepth of 2 segments would be converted

to 320 bytes, instead of the actual 161 bytes.

3.3 Evaluation

The evaluation of our BurstRadar prototype is centered around answering three ques-
tions. First, how efficient is BurstRadar, given that it selectively snapshots microburst
queues? Second, how well does BurstRadar handle multiple simultaneous microbursts?
And finally, what is the cost of BurstRadar in terms of hardware resources required in
the switching ASIC?

Testbed. The evaluation experiments were conducted in our hardware testbed which
consists of a Barefoot Tofino [139] switch and commodity servers equipped with Intel
XXV710 (25/10 Gbps) and Intel X710 (10 Gbps) NIC cards. To precisely generate net-
work traffic at us resolution and cause microbursts as per the input network traces, we
wrote our own traffic generator application (450 lines of C++) using the PcapPlusPlus
library [159] with DPDK [63] as the datapath. The testbed is organized in a topology as
shown in Figure 3.4. Based on the data in [188], the sender continuously sends 1 Gbps
background traffic keeping the utilization of the test link under 10% for 90% of the time.
The burster emulates different sources of microburst, sending bursts at 25 Gbps such

that the queuing at the switch’s egress buffer (and the subsequent 100% link utilization)

3.3 Evaluation 43

100 -

10 ¢ %

INT ——
BurstRadar —*—
O,racle —o

Packets Processed (%)

n n n n | n n n | n n n
0 20 40 60 80 100
Latency-Increase Tolerance Threshold (% RTT)

(a) Cache Traffic

1

100

INT ——
BurstRadar —x—
O‘racle —o—

Packets Processed (%)

n n n n | n n n | n n n
0 20 40 60 80 100
Latency-Increase Tolerance Threshold (% RTT)

b) Web Traffic
Figure 3.5: Fraction of total numbe(r c)>f packets processed for different latency-increase

thresholds

1

follows the distributions for duration and inter-arrival times as per the input trace.

Network Traces. Data on the frequency and duration of queuwing microbursts
is currently not available publicly. Therefore, we took reference from the data on link
utilization bursts in a Facebook datacenter [188]. It provides the distribution of duration,
inter-arrival times and packet size for utilization bursts when the link utilization spikes
above 50%. We can safely assume that this is the worst case upper bound on the duration
and inter-arrival times for queuing microbursts, which entail 100% link utilization on the
egress link. We used the traffic data from two latency-sensitive applications — web, and
in-memory cache — to generate 10-second long traces.

Methodology. We compare BurstRadar to INT [77, 111] and to an offline Oracle
algorithm. The Oracle algorithm has access to the telemetry information of all the
packets and is thus able to capture queue snapshots as if they were captured by the

BQE (c.f. §3.2.1). It represents the optimal solution.

44 BurstRadar

10% RTT []
40% RTT r”° /1]
70% RTT KXXX] |
100% RTT]

- - N
o [é)] o
— T
|

(6}
R a—
|

Number of extra packets
compared to Oracle (%)

N
Worst Real-World Best
Packet Size Distribution

Figure 3.6: Number of extra packets marked compared to the Oracle solution for
different packet size distributions (Cache Traffic)

3.3.1 Efficiency

We quantify the overhead of continuous microbursts monitoring in terms of the fraction
of total number of packets that are required to be processed by the monitoring system.
We compare the overhead incurred by BurstRadar, INT and the Oracle algorithm for
the cache and web traffic in Figure 3.5. We observe in Figure 3.5a that even for a
low latency-increase threshold of 5% RTT, BurstRadar is 10 times more efficient than
INT. Since the RTT is approximately 25 us in our testbed, this threshold translates
to 1.25 us of queuing delay, or 1562.5 bytes worth of queuing at 10 Gbps. We verified
with our experiments that this threshold only filters out packets that are not involved
in microbursts. In practice, latency sensitive applications might not require such a low
threshold and therefore the overhead for BurstRadar would be even lower. Note that
at a latency-increase threshold of 0% RTT, BurstRadar would be equivalent to INT as
telemetry information for every single packet is processed. The efficiency result for web

traffic is similar to cache traffic as shown in Figure 3.5b.

3.3 Evaluation 45

Overhead of Extra Packets. While BurstRadar is more efficient than INT in
terms of the number of packets processed, it does process a few extra packets due to the
segments to bytes conversion of deqQdepth (see §3.2.4). The number of extra packets
identified by BurstRadar depends on the packet size distribution and the segment size of
the ASIC’s packet buffer. The worst case occurs when every packet is exactly one byte
larger than the segment size, thereby causing each packet to occupy two segments. The
best case occurs when the size of all packets is an integer multiple of the segment size.

In Figure 3.6, we plot the number of extra packets identified by BurstRadar compared
to the Oracle algorithm for the cache workload with different packet size distributions:
worst, real-world and best. For real-world, we use the cache workload’s original packet
size distribution [188]. We note that while the worst case shows about 21% extra packets
compared to the Oracle, the number of extra packets is typically only about 6% as
shown by the real-world case. In the best case, there are no extra packets. Figure 3.6
also shows that a larger latency-increase threshold leads to a higher proportion of extra
packets. This is because for a given packet-size distribution, larger the latency-increase
threshold, larger the number of packets in the remaining queue below the threshold, with
each packet contributing extra bytes to bytesRemaining. The real-world overhead for
web traffic is lower than the cache traffic due to larger packet sizes [188] and is omitted

because of space constraints.

3.3.2 Handling Concurrent Microbursts

As discussed in §3.2.3, multiple concurrent microbursts can result in a higher rate of
writes to the ring buffer than the rate of reads. If the ring buffer size is not sufficiently
large, ring buffer overwrites may occur, leading to the loss of telemetry information for
some of the marked packets. Currently, no data is available on how often we should

expect concurrent microbursts at different egress ports for a switch. Therefore, we

46 BurstRadar

T T T T T
10 Concurrent uBursts —e—
6 Concurrent uBursts —x—
2 Concurrent uBursts —+—

uBurst Pkts Missed (%)
N

0 . ¢ T 4 = g s
100 200 300 400 500 600 700 800 900 1000
Ring Buffer Size (entries)

(a) Cache Traffic
T T

4
10 ‘ConCL‘Jrrent ‘uBurs‘ts —

3L 6 Concurrent uBursts —— |
2 Concurrent uBursts —+—

2 -]

—_

uBurst Pkts Missed (%)

’kﬁf— _ & & & & & &

0 — % % = 2 = =
100 200 300 400 500 600 700 800 900 1000
Ring Buffer Size (entries)

(b) Web Traffic

Figure 3.7: Fraction of microburst packets missed with concurrent microbursts for
different ring buffer size

simulate? microburst traffic on multiple ports of a switch using 10-second long traces of
cache and web traffic from [188]. In Figure 3.7, we plot the fraction of microburst packets
missed by BurstRadar for different ring buffer sizes (10 to 1k entries) when microbursts
occur on 2, 6 and 10 ports concurrently. With just 300 entries, BurstRadar is expected
to be able to handle 10 simultaneous microbursts (cache traffic) with a packet miss rate
lower than 1%. About 1000 entries are required to reduce the miss rate to absolute 0%.
This suggests that BurstRadar is resilient and can handle simultaneous microbursts with

a modestly-sized ring buffer.

2This experiment is currently not supported by our testbed due to lack of equipment to generate
multiple concurrent microburst traffic.

3.4 Summary 47

Table 3.1: Hardware resource consumption of BurstRadar (ring buffer size of 1k entries)
compared to the baseline switch.p4

Resource switch.p4 BurstRadar Combined
Match Crossbar 50.13% 3.39% 53.52%
Hash Bits 32.35% 4.83% 37.18%
SRAM 29.79% 4.06% 33.85%
TCAM 28.47% 0.69% 29.16%
VLIW Actions 34.64% 4.69% 39.33%
Stateful ALUs 15.63% 12.5% 28.13%

3.3.3 Resource Utilization

In Table 3.1, we compare the hardware resources required by our BurstRadar proto-
type (with a ring buffer of 1k entries) to that required by a production (closed-source)
version of switch.p4. The switch.p4 is a baseline P4 program that implements various
networking features (L2/L3 forwarding, VLAN, QoS, ACL, etc.) for a typical datacenter
ToR switch. A simplified open-source version of switch.p4 is available at [48]. We note
that BurstRadar’s overall resource consumption is low for various hardware resources.
BurstRadar consumes a relatively larger proportion (12.5%) of stateful ALUs as they are
used for the computations in our Snapshot algorithm and for managing the ring buffer
pointers. The SRAM is used for the exact match-action tables and for implementing the
ring buffer. Despite the ring buffer size of 1k entries, BurstRadar’s SRAM requirements
remain low. Also, the combined usage of all resources by switch.p4 and BurstRadar is

well below 100%. This means that BurstRadar can easily fit on top of switch.p4.

3.4 Summary

Detecting microbursts in a datacenter network and identifying the contributing flows is
difficult because microbursts are unpredictable and last for 10’s or 100’s of us. BurstRadar
leverages programmable switching ASICs to implement continuous and efficient monitor-

ing of microbursts by capturing the telemetry information of only the packets involved

48 BurstRadar

in microbursts. Our testbed evaluation using production network traces demonstrates
that BurstRadar can detect microbursts with 10 times less overhead compared to exist-
ing approaches and is resilient to simultaneous microbursts. This chapter describes our
BurstRadar prototype, as well as the design decisions and considerations in dataplane
packet cloning and ring buffer sizing. Our work demonstrates that modern programmable
ASICs have made it practical to detect and characterize microbursts at multi-gigabit link
speeds in high-speed datacenter networks.

BurstRadar primarily captures local queue information which is sufficient to find
the root cause of microbursts in most cases. However, in cases involving transient root
causes, finding the root cause may require global information. For example, data from
BurstRadar can help to conclude that packets from certain set of servers arrived at the
same time and that caused the microburst. However, it cannot immediately tell “why”
they arrived at the same time — were they sent in a synchronous manner by the servers
or they got synchronized within the network. Answering this question requires capturing
global telemetry information and our follow-up work called SyNDB [105] (outside of this

thesis) is able to achieve this.

Chapter

SQR: In-network Packet Loss Recovery
from Link Failures for Highly Reliable

Datacenter Networks

In the previous chapter, we described BurstRadar that contributes towards mitigating
the increase in tail FCTs due to unexpected congestion events. As described in Section
1.1 and shown in Figure 1.2, in order to ensure bounded tail FCTs, we also need to
handle link failure events. Now link failure events are of two types: (i) fail-stop: where
the entire link goes “down” and no packets can travel in either direction; and (ii) gray:
where the link is “up” but randomly drops a few packets due to packet corruption. Both
types of link failures cause packet loss that lead to increased tail FCTs due retransmis-
sion delays and retransmission timeouts. In this chapter, we address the problem of
increased tail FCTs due to fail-stop link failures through the design and implementation
of Shared Queue Ring (SQR). We first describe in more details the problem of fail-stop
link failures in datacenter networks (Section 4.1) followed by a measurement study (Sec-

tion 4.2) which demonstrates that existing link failure management techniques fall short

50 SQR

of keeping the tail FCTs low under link failures. We then present the detailed system de-
sign of SQR (Section 4.3) before presenting the evaluation results (Section 4.4). Finally,
we discuss other related issues (Section 4.5) before concluding the chapter (Section 4.6).

For the remaining of this chapter, we refer to fail-stop link failure simply as “link failure”.

4.1 Introduction

Datacenter computing is dominated by user-facing services such as web search, e-commerce,
recommendation systems and advertising [8]. These are soft real-time applications be-
cause they are latency-sensitive and the failure to meet the response deadline can ad-
versely impact user experience and thus revenue [8]. Such application-level deadlines can
be translated into flow completion time (FCT) targets for the network communication
between the worker processes that work together to serve the user requests [180]. There
have been many proposals to reduce the FCTs of latency-sensitive flows for user-facing
soft real-time applications under normal network conditions [8, 10, 87, 131, 136, 180].
In this chapter, we study the problem of reducing FCTs in the presence of link failures.
Datacenter networks typically use commodity hardware components mainly to save
costs. These include line cards, transceivers, cables, connectors, etc. Failure of any of
these components leads to failure of the corresponding network links. Now, the failure
rate of these individual components is very small — about 107 failures per hour [67].
However, in large warehouse-scale datacenters, since there are hundreds of thousands of
these components, the network-wide failure rate can be very large (10'). As a result,
link failures are common in datacenter networks. A large-scale study across a Microsoft
datacenter reported 136 link failures per day at the 95" percentile [73]. The resulting
packet loss from link failures has an outsized impact on short latency-sensitive flows.
Such flows typically operate with a small TCP congestion window so when there is packet

loss, the TCP receivers cannot send enough duplicate ACKs within one RTT [41]. As a

4.1 Introduction 51

Link failure management

l | |
Pkt loss
Route recovery recovery

Link failure
detection

(e.g., F10) '—‘—' *

Protection Restoration Host-based In-network

(e.g., Conga, Hula, (e.g.,

SPIDER, F10) ~ SharcBackup) (&€~ TCP) (SQR)

Figure 4.1: Design space for link failure management.

result, fast retransmission is rarely triggered and the lost packets are often recovered via
retransmission timeouts (RTOs) [184]. Such timeout events result in much larger delays
than the lifespan of the short flows and significantly increase FCT [185].

A large number of approaches have previously been proposed to reduce the impact
of link failures, including fast re-routing [35, 147, 158, 162, 174], flowlet-based load bal-
ancing [7, 109] and re-configurable topologies [122, 181]. All these approaches inevitably
rely on link failure detection which has a minimum delay. Among them, the state-of-
the-art ShareBackup [181] takes as little as 730 us to recover from a link failure and it
relies on F10’s link failure detection technique [122] which has a delay of about 30 us.
This total delay of 760 us on a 10 Gbps link translates to about 950 KB, and some 600
1500-byte packets could be lost. Even if we can reroute immediately after detecting the
link failure (30 us) using a pre-computed backup path, some 25 1500-byte packets could
still potentially be lost. This suggests that while existing proposals can achieve low FCTs
under normal network conditions, they cannot maintain or keep these low FCTs stable
under link failures, even when using state-of-the-art link failure recovery techniques. In
other words, in the face of link failures, the datacenter network stack today is unable to
provide any tight bounds or strong reliability guarantees (up to five or six 9’s) on FCTs
or the network latency.

We observe that to completely mask the effect of packet loss and the resulting long

52 SQR

recovery latency, the network has to be responsible for packet loss recovery, instead of
relying on end-to-end recovery. To this end, we propose Shared Queue Ring (SQR), an
on-switch mechanism to recover packets that could be lost during the period from the
detection of a link failure to the completion of the subsequent network reconfiguration.
The overall workflow for SQR is as follows: SQR makes copies of recently transmitted
packets and caches them for a configurable amount of time. In the meantime, a link
failure detection mechanism continuously looks for link failures. If no link failure occurs,
SQR simply drops the cached copies of packets. However, if a link failure is detected,
the failure detection mechanism informs SQR about the same and also activates a route
reconfiguration mechanism. In this case, SQR continuous to buffer the packet copies
until the route reconfiguration mechanism signals SQR that a backup path has been
established. SQR then retransmits the cached packet copies on the backup path. SQR
is therefore complimentary to existing methods of link failure detection and route recon-
figuration as shown in Figure 4.1. Furthermore, it operates locally and independently
at each switch without requiring any coordination with other switches.

It is not possible to know in advance if a link will fail when a packet is sent, since link
failures occur randomly and cannot be predicted [73]. We define the route failure time to
be the worst-case time taken to detect a link failure and for the network to recover. We
observe that by estimating the upper bound on the route failure time, a switch can cache
a copy of recently sent packets for this duration. Then, in the event of a link failure, we
can avoid packet loss by retransmitting the cached copy of these previously transmitted
packets on the backup path. Naively, this can be implemented as a delayed queue that
temporarily delays (stores) every packet passing through it for a configurable amount
of time. When the link fails, we can retransmit the cached packets from this delayed
queue. An ideal delayed queue is where each packet in the queue has a future timestamp
at which it would be sent and the queue is ordered by these timestamps. Unfortunately,

no queuing engine today readily provides the queuing discipline required to realize such a

4.1 Introduction 53

Table 4.1: ASIC packet buffer trends

ASIC Year Packet Buffer
Trident+ [28] 2010 9MB
Trident 1T [29] 2013 12MB
Trident 1T+ [56] 2015 16 MB
Tomahawk+ [31] 2016 22 MB
Tomahawk II [32] 2017 42 MB

delayed queue. Furthermore, existing queuing engines, including those in programmable
ASICs, cannot be programmed to implement a custom packet scheduling algorithm that
implements a delayed queue. To realize a delayed queue in any other way, the basic
primitive required is packet storage. In a switch dataplane, even a programmable one,
the packets can only be stored in the packet buffer of the queuing engine [27]. This
packet buffer storage can only be utilized by placing packets into the default FIFO
queues, which send out packets as fast as possible without introducing any delay.

In this chapter, we describe a technique to emulate a delayed queue in the dataplane
of a programmable switch. Our emulated delayed queue differs slightly from the ideal
delayed queue, wherein it delays the packet for “at least” the specified amount of time,
instead of “exactly” the specified amount of time. We do so by retaining a copy of a
sent packet in a FIFO queue. If this packet reaches the head of the queue before being
sufficiently delayed, we use egress processing to route this packet back into the FIFO
queue. While this approach is, in principle, sufficient to emulate a delayed queue, it is
challenging to ensure that no packet is missed out and the packets are retransmitted
in order. Furthermore, there are two costs involved — the egress pipeline processing
required to build and maintain the emulated delayed queue, and the additional packet
buffer required for the packets in the delayed queue (i.e. the cached packets). A naive
implementation could inflict additional egress processing delays on other flows going
through the switch. SQR avoids this with a Multi-Queue Ring architecture that exploits

unused egress processing capacity. The egress pipeline is provisioned to support all

54 SQR

ports at full packet rate. In practice, most networks will almost always have spare egress
processing capacity available [188]. We only use the idle ports so that other traffic
passing through the switch is uninterrupted.

We implemented SQR on a Barefoot Tofino [139] switch!. We show using experiments

on a hardware testbed using trace-driven workloads that:

¢ SQR can completely mask the effect of link failures from end-point transport by

preventing packet loss;

o Coupled with current link failure detection (F10 [122]) and route reconfiguration
schemes (ShareBackup [181]), SQR can reduce the tail FCT by 10 to 1000 times

for web and data mining workloads in the presence of link failures; and

e SQR’s overhead in terms of packet buffer consumption, additional egress processing
and ASIC hardware resources is low, thereby demonstrating the feasibility of our

solution.

Gill et al. observed that network redundancy is not entirely effective in reducing the
impact of link failures [73]. Our work addresses this gap by enabling a seamless hand-off
of packets from a failed route to an alternative route, thereby fully exploiting available
multi-path redundancy. To the best of our knowledge, we show, for the very first time,
that it is possible to handle link failures without a single packet being lost or reordered in
a multi-gigabit datacenter network?. Our proposed approach was not previously feasible
because switches would not have enough packet buffer to cache packets for the route
failure time. However, recent innovations have substantially reduced the route failure
time (65ms in Portland [140] to 760 us in ShareBackup [181]) so that the number of
packets to be cached is significantly reduced. On the other hand, on-chip shared packet

buffer for switching ASICs has increased more than fourfold over the last 5-7 years (see

LA simple version of SQR is available at: https://github.com/NUS-SNL/sqr
2 As long as SQR uses the correct estimates for the worst-case link failure detection and route recovery
delays.

4.2 Motivation 55

swl sw2

SwW6

sw3 sw4

=
sw7
hl

sw8 sw9 swl0

h2 h3 h4
Figure 4.2: Testbed.

Table 4.1), making in-network seamless packet hand-off practical.

4.2 Motivation

Link failures are dominated by connection problems such as cabling and carrier signal-
ing/timing issues [62]. Gill et al. observed that link failures were more common than
device failures, and some 136 link failures were observed daily at the 95'® percentile [73].
Link failures usually last for a few minutes and exhibit a high variability in their rate of
occurrence.

For any solution that tries to minimize the effects of link failures, there are two
main delays involved: (i) link failure detection delay, the time it takes to detect that a
link has failed, and (ii) network reconfiguration delay, the time required to reconfigure
the network and restore route connectivity in response to the link failure. Together we
refer to the sum of these delays as the route failure time. In this section, we show that
although the route failure times have reduced from 65 ms in Portland [140] to 760 us in
ShareBackup [181], short latency-sensitive flows still suffer from high FCTs when there
are link failures. To the best of our knowledge, ShareBackup currently has the lowest

reported route reconfiguration time.

56 SQR

Setup. We do not have access to an optical switch, and so we emulated Share-
Backup’s behavior in our testbed by disabling a link and enabling it again after Share-
Backup’s route reconfiguration time. We refer to this simulation of ShareBackup as
ShareBackup’ or SB’. Our testbed (Figure 4.2) consists of a fat-tree topology built
using a partitioned Barefoot Tofino switch (similar to [106]) and Intel Xeon servers
equipped with Intel X710 NICs. All links are 10 Gbps and the network RTT between
the hosts is about 100 us. Each host runs Linux kernel 4.13.0 with TCP CUBIC.
SACK is enabled and RTO,,;, is set to the smallest possible value of 4ms. Host h2
sends short, latency-sensitive (<100 KBytes [7]) TCP flows to host h4 via the path
sw8 — swd — sw2 — swb — swl0 — h4. The flow sizes are drawn from the distri-
bution of a web search workload [8]. The flows are sent one at a time with no other
network traffic. Since the FCT of a small flow is less than 2ms in normal case, we
inject link failures between switches sw6 and sw10 every 20 ms® to ensure that each flow
experiences link failure at most once. To emulate ShareBackup’s route reconfiguration,
we use precise dataplane timer mechanisms to generate a link failure that lasts for ex-
actly 760 us. We use a deflect-on-drop switch dataplane mechanism to identify the flows
affected by link failures.

FCTs under Link Failures. Figure 4.3 shows the FCTs of the flows where failure-
affected flows form three distinct horizontal clusters*. The cluster of FCT values around
1second is due to the SYN or SYN-ACK packet loss since the default retransmission
timeout (RTO) for these packets is set to 1second [156]. The middle two clusters of FCT
values (~10ms and ~100ms) are due to RTOs being triggered either due to tail losses
in a cwnd or the complete loss of all packets in a cwnd. For failure affected flows, we did
not observe any fast retransmissions. Overall, we see that when there are contiguous
packet losses due to link failures, even with state-of-the-art fast recovery mechanisms

like ShareBackup, the FCTs for short flows can increase by several orders of magnitude.

3This failure injection rate only facilitates faster experimentation and does not influence the results.
4The small gap in the flow size is an artifact of the web search workload [8] that we use.

4.2 Motivation 57

7
10 Failure * No failure +
106 mw K- MK
— ¥ % xR X K
210° ¢
—
4 % #*
8 10
10° o L
102 ‘
100

Flow Size (KBytes)

Figure 4.3: FCTs of latency-sensitive web search flows [8] under link failures with
ShareBackup as route recovery mechanism.

To further understand this result, we measured the TCP cwnd sizes for the above flows
under no link failure (no loss) conditions. We found that, at 90t percentile, the cwnd
size is about 10 MSS segments which is the default initial cwnd size on Linux [44]. The
maximum observed cwnd size was 32 MSS segments which translates to 46,336 bytes with
MSS being 1448 bytes. However, at 10 Gbps link speed, a route failure time of 760 us
translates to 950,000 bytes, i.e. 656 MSS segments after accounting for the Ethernet
preamble, framing, and inter-frame gap. Therefore, the route is in the failed state for a
much larger duration than the time it would take for a cwnd worth of packets to traverse
a link in the network. This implies that it is very unlikely to have packet losses as “holes”
within a cwnd so as to trigger fast transmissions. In our experiment with short flows,
link failures always triggered expensive RTOs resulting in significantly longer FCTs.

The results presented above also hold true for other deployed TCP variants (DCTCP [8],
TIMELY [131]) since they all employ the same mechanism for handling packet loss. In
summary, our results (which concur with the results in [37]) show that the tail and whole
window losses dominate in case of short flows, triggering RTOs and inflating FCTs under
link failures. Therefore, to reduce tail FCTs under link failures, we need to avoid RTOs.

Discussion. The impact of RTOs can be alleviated to an extent by using microsecond-

58 SQR

level RT Oy, [101], which requires significant modifications to the end-host network
stack [175]. A small RT'O,,;,, however risks reducing throughput due to spurious retrans-
missions [151] and leads to increased overall packet loss for incast-like scenarios [101].
Deciding on the right value for RT' Oy, is tricky and it is typically set at 5ms in pro-
duction datacenters [37, 40]. At this value, the majority of latency-sensitive flows are
small enough to complete in one RTT [75] and therefore under link failures they would

take at least twice as long to complete, irrespective of the value of RT'Osn.

4.3 SQR Design

In §4.2, we argued that to eliminate high FCTs under link failures, we need to avoid
RTOs. SQR therefore focuses on fast in-network recovery of packets lost during the
route failure time, without involving the end hosts. Our key idea is to continuously
cache a small number of recently transmitted packets on a switch and in the event of a
link failure, retransmit them on the appropriate backup network path.

SQR runs entirely in the dataplane of an individual switch. Our design assumes the
Portable Switch Architecture (PSA) [49] consisting of an ingress pipeline, a Buffer and
Queuing Engine (BQE), and an egress pipeline. When an incoming packet enters the
ingress pipeline, the primary egress port is determined by the network’s routing scheme.
Subsequently, the packets from the latency-sensitive applications will be marked if it
belongs to a latency-sensitive flow” that needs to be protected by SQR. The packet passes
through the BQE normally and when it arrives at the egress pipeline, it is subjected to
SQR’s processing if it is marked.

In the egress pipeline, SQR by default forwards a packet to the destination port and
be proceeded normally. However, if a packet is marked, SQR performs the additional

task of creating a copy of the packet and caches the copy for a time duration equal to the

SLatency-sensitive applications can request SQR’s protection by using a pre-defined set of TCP port
numbers, IP Header TOS bits or VLAN IDs.

4.3 SQR Design 59

BQE Egress pipeline
Port \ .
FIFO Queues |
I Yes
Pkts to cache
—» Delay >=§?
. No

Artificial queue Queue Ring

Figure 4.4: Caching packets on switch using a FIFO queue.

link failure detection delay (§4.2). By doing so, SQR ensures that packets are not lost
if a link fails later. After this delay, SQR checks if the cached packet’s primary egress
port (on which the original packet was sent) is still operational. If the link is up, then
it means that the original packet was transmitted successfully and the cached copy of
the packet is dropped. However, if the link is down, then the original packet was likely
lost and a copy of the packet is cached again for time equal to the network configuration
delay (§4.2). This additional delay allows the network to configure the backup path
without losing the cached packets. After this second delay, the cached packets are sent
on the backup path (port).

SQR’s operation requires the following information in the switch dataplane: (i) The
link status of the ports (up or down), (ii) the backup port (route) for each primary
port (route) to a destination top-of-the-rack switch. SQR integrates with a link failure
detection mechanism such as the one used in F10 [122] to update and maintain the status
of the ports (albeit after a delay). It also integrates with a route recovery scheme (e.g.

ShareBackup [181]) to determine the backup port for each primary port.

60 SQR

4.3.1 Caching Packets on the Switch.

Conceptually, the caching of packets can be achieved with a delayed queue, where each
individual packet entering the queue is delayed for a fixed minimum amount of time
(termed as delay time) before it leaves the queue. Unfortunately, there is no such prim-
itive in the current switching ASICs. Furthermore, the queuing engines, including those
in programmable ASICs do not support programming such custom scheduling to real-
ize a delayed queue inside the queuing engine. In addition, packet storage, which is
required to realize a delayed queue, is only available inside the queuing engine in the
form of FIFO queues. Therefore, it is not straightforward to realize a delayed queue in
existing switching ASICs.

SQR. achieves the delayed queue functionality using a “Queue Ring” that combines
the BQE’s FIFO queues, egress pipeline processing and high-resolution timestamping.
Today’s programmable switches support multiple FIFO queues per port (all inside the
BQE) and the BQE handles all queues across all ports on the switch. The high-level
idea (shown in Figure 4.4) is to place the packets to be cached inside a spare FIFO
queue of a port on the switch (queue selection details in §4.3.2). When the FIFO queue
transmits the cached packet at a later time, high-resolution timestamping is used to
check if the packet has been delayed for the required duration . If the packet is not
sufficiently delayed (delay < ¢), the egress pipeline sends the cached packet back to the
FIFO queue. Once a packet is sufficiently delayed (delay >= ¢) after passing through
the FIFO queue one or more times, it exits the Queue Ring. This helps to build up
an artificial queue of cached packets, since effectively no packet exits without being
sufficiently delayed. In the steady state, where new packets enter the Queue Ring at
a fixed rate R, the artificial queue build-up remains fixed and equal to R x §. Notice
that each packet accumulates delays from two sources — (i) the queuing delay due to the

artificial queue build-up, and (ii) the egress processing delay incurred in sending a packet

4.3 SQR Design 61

back to the FIFO queue. Hereafter we will refer to the FIFO queue used to implement

a Queue Ring as the caching queue.

4.3.2 Multi-Queue Ring Architecture

Our Queue Ring approach utilizes the egress processing of the port associated with the
caching queue to emulate the delayed queue behavior. Unfortunately, the processing of
these cached packets may affect the normal traffic passing through other queues of that
port. Therefore, to minimize the impact on existing traffic, we do not use the same
port for packet caching. Instead, SQR assigns one queue from the multiple queues [46]
of each port as a caching queue and spreads the queued packets across a set of these
caching queues. In particular, when a cached packet is to be sent back to a FIFO queue
for additional delay, SQR dynamically chooses the caching queue that belongs to a port
with the least utilization. We refer to this architecture that consists of multiple caching
queues from the BQE that are connected to each other by the egress pipeline to form
a ring as the Multi-Queue Ring (see Figure 4.5). We exploit the fact that while the
egress pipeline is provisioned to support all ports at full packet rate, there is almost
always spare egress processing capacity available in the switch under typical network
load conditions [188]. The spare capacity, however, is available on different ports at
different times. Using a ring of multiple queues allows SQR to exploit the spare capacity
by dynamically changing the set of low utilization ports.

An artifact of SQR’s Multi-Queue Ring architecture is that when the cached packets
exit after being buffered, they do not exit in the same order as they originally entered
the Multi-Queue Ring. Therefore, in the event of a link failure, the exiting cached
packets need to be ordered before they are sent to the backup port. To do so, SQR uses
a counter-based packet sequencing mechanism. SQR’s Multi-Queue Ring architecture
is implemented with three components running in the egress pipeline (also shown in

Figure 4.5): (i) a delay timer (§4.3.3) to keep track of each cached packet’s elapsed time,

62 SQR

Ingress pipeline BQE Egress pipeline
Mark Primary Caching queue
port
I\M’
[Leastloaded Pkt out
Pkt In port
Backup
port

Send back to BQE

Figure 4.5: Multi-Queue Ring architecture.

(ii) a queue selection algorithm (§4.3.4) to dynamically choose the next caching queue,

and (iii) a packet order logic (§4.3.5) to order the cached packets before re-transmission.

4.3.3 Delay Timer

The delay timer first computes how long each packet has been buffered in the Multi-
Queue Ring (called ElapsedTime). To do so, when a copy of the original packet
is created, the delay timer attaches the egress timestamp provided by the dataplane
(called StartEgressTstamp) to the copied (cached) packet as metadata. As the cached
packet passes through the Multi-Queue Ring, it enters the egress pipeline one or more
times. Each time in the egress pipeline, the delay timer calculates the time elapsed
so far (ElapsedTime) by taking the difference between the current egress timestamp
(CurrentEgressTstamp) and the packet’s StartEgressTstamp. The delay timer then
compares the ElapsedTime with the required delay time (&) to check if the packet has
been buffered for at least the delay time. If so, the delay timer would set the DelayEnough
field in the packet (later used by the queue selection algorithm in §4.3.4). The delay
timer logic is summarized in Algorithm 2. Because of limited bit-width (n bits) clock
register in the switch dataplane, the calculation needs to handle cases with value wrap
around.

Delay Time (6). This is the time for which each copied (cached) packet needs to

4.3 SQR Design 63

Algorithm 2: Delay Timer.

Initialization: ElapsedTime = 0, pkt.DelayEnough = 0;
1 foreach marked pkt in egress pipeline do

2 diff = CurrentEgressTstamp — StartEgressTstamp;
3 if diff > 0 then

4 | ElapsedTime = diff;

5 else

6 | ElapsedTime = 2"+ diff;

7 if ElapsedTime => 4 then

8 ‘ pkt.DelayEnough = 1;

end

be buffered on the switch. Since there is a delay in detecting link failures, d is initially
set equal to the upper bound of the link failure detection delay. When a link failure
is detected, SQR dynamically increases d by value equal to the network reconfiguration
delay so as to hold the cached packets until the network reconfiguration is complete.
Since the total packets being buffered on the switch is proportional to ¢ (c.f. §4.3), its

value determines SQR’s packet buffer requirement (§4.4.4).

4.3.4 Dynamic Queue Selection

Recall from §4.3.2 that SQR designates one queue on each port as the caching queue. In
the Multi-Queue Ring, each time a cached packet is to be sent from the egress pipeline
back to the BQE, the queue selection logic (Algorithm 3) decides to which caching queue
to forward the packet. As the goal is to minimize the impact on other traffic, SQR selects
the next caching queue from a port which has the least utilization at the current moment
(called the LeastLoadedPort). A packet is sent to the LeastLoadedPort in the following
cases: (i) if it is a freshly made copy of an original packet and the PrimaryPort is UP, or
(ii) if it is an already cached packet that has not been sufficiently delayed. A sufficiently
delayed cached packet (as indicated by the Delay Timer in §4.3.3) is dropped if the

primary link is up. If the primary link is down and the incoming packet is an original

64 SQR

Algorithm 3: Dynamic Queue Selection.
Input: PrimaryPort, LeastLoadedPort, BackupPort

1 foreach marked pkt in egress pipeline do
2 if PrimaryPort == UP then
3 if cached pkt then
4 if pkt.DelayEnough ! = 1 then
5 ‘ Send pkt to the LeastLoadedPort;
6 else
7 ‘ Drop cached pkt;
8 else
9 ‘ Make a copy and send the copy to LeastLoadedPort;
10 else
11 if cached pkt then
12 if pkt.DelayEnough ! = 1 then
13 ‘ Send pkt to the LeastLoadedPort;
14 else
15 ‘ Send pkt to BackupPort;
16 else
17 ‘ Send pkt to BackupPort;
end

packet or a sufficiently delayed cached packet, it is sent to the caching queue of the
backup port for retransmission.

Tracking Port Utilization. SQR tracks the egress utilization of all the ports by
maintaining a moving window of the number of bytes transmitted on each port. The
size of the window is the time interval over which the number of transmitted bytes are
accumulated. We discuss window sizing in §4.3.6. SQR maintains a LeastLoadedPort
and the corresponding LeastUtilization. When an original packet arrives at the egress
pipeline, the utilization of its egress port is updated. If this utilization is lower than the
LeastUtilization, SQR will update the LeastUtilization to the current utilization
and the LeastLoadedPort to the current egress port. When an original packet is trans-

mitted on the LeastLoadedPort, SQR will also update the value of LeastUtilization.

4.3 SQR Design 65

Algorithm 4: Packet Order Logic.
Input: NextPktTag, PrimaryPort, BackupPort
1 foreach marked pkt in egress pipeline do

2 if PrimaryPort == UP then

3 if pkt.DelayEnough == 1 then

4 ‘ NextPktTag = PktTag + 1;

5 else

6 if PktTag == NextPktTag then

7 | NextPktTag + = 1;

8 else

9 if PktTag > NextPktTag then

10 ‘ Send pkt to BackupPort;
end

4.3.5 Packet Order Logic

When a link failure happens, the delay timer (§4.3.3) and the dynamic queue selection
(§4.3.4) would send the cached copies of recently transmitted packets to the backup
port (path). However, since cached packets are circulated through a ring of queues, the
order in which they are sent to the backup port may not be the same as the original
arrival sequence. To ensure that packet ordering is preserved, the packet order logic
(Algorithm 4) first needs to know the original ordering of the packets. To achieve this,
the packet order logic consists of a monotonically increasing packet counter in the egress
pipeline. When an original packet to be protected by SQR enters the egress pipeline,
the counter value (PktTag) is added to the packet as metadata and gets copied to the
corresponding cached packet. The packet order logic also maintains an expected next
counter number (NextPktTag). Both the PktTag and the NextPktTag are used to ensure
correct packet ordering as following: (i) if the cached packet’s PktTag is equal to the
expected NextPktTag, SQR just sends the packet and updates the NextPktTag (lines
6-7); (ii) if the cached packet’s PktTag is larger than the NextPktTag, it will send this
packet back to the backup port’s caching queue and wait for the packet with the correct

PktTag (line 9-10) to be sent first. When a cached packet with a PktTag leaves the

66 SQR

switch due to either being dropped after sufficient buffering or sent on the backup path,
SQR updates the NextPktTag (lines 4, 7). Since the cached packets are ordered before

being sent, this may add extra delay on recovery time (§4.4.2).

4.3.6 Implementation

We implemented SQR on a Barefoot Tofino switch [139] in about 1,100 lines of P4 code.
A common action performed by SQR is to send a packet from the egress pipeline back
to the BQE. This action is achieved with two primitives, egress-to-egress cloning (also
called mirroring) and packet drop. For each cached packet, the SQR metadata is added
when the cached packet is first created and is removed before the packet is sent out of
the switch. The SQR metadata contains three fields: (i) PktTag: used by packet order
logic for reordering (§4.3.5); (ii) StartEgressTstamp: used by delay timer to record
when the cached packet was created (§4.3.3); (iii) PrimaryPort: used by queue selection
logic to track the cached packet’s primary port (§4.3.4).

The delay timer, queue selection logic and the packet order logic are implemented
using a series of exact match-action tables and stateful ALUs. The delay time is stored
in a dataplane register and can be dynamically configured based on the link failure
detection mechanism being used. For computing link utilization (§4.3.4), we set the
moving window size larger than the network RTT to avoid sensitivity to transient sub-
RTT traffic bursts [7]. At the same time, we also avoid setting the window so large that
it would aggregate the bytes of entire short flows and make SQR sluggish to react to
the flow churn. Since the network RT'T in our testbed is about 100 us and the minimum
FCT in our evaluation workloads is about 157 us, we used a window size of 150 s in our
prototype. The LeastLoadedPort and LeastUtilization are also maintained using
dataplane registers. We note that SQR’s implementation requires standard primitives
such as egress mirroring, encap/decap (for SQR metadata), registers and match-action

tables which are specified in the PSA [49] and also available in fixed-function ASICs.

4.4 Performance Evaluation 67

Therefore, SQR can be implemented on any programmable ASIC based on the PSA [49]

or it could be baked into fixed-function ASICs.

4.4 Performance Evaluation

We evaluate our SQR prototype by answering three questions: (1) How effective is
SQR in masking link failures from end-point TCP stack, such that RTOs will not be
triggered? (2) When SQR is integrated with other network reconfiguration systems
(e.g. ShareBackup), how much is the reduction in FCTs under link failures for latency-
sensitive workloads? (3) What is the cost (overhead) of SQR in terms of effect on other
traffic and consumption of resources in the switch hardware? We perform the evaluation

on the same hardware testbed as described in §4.2 unless otherwise mentioned.

4.4.1 Experimental setup

Workloads. We consider two empirical workloads with short flows taken from produc-
tion datacenters: a web search workload [8] and a data mining workload [75]. The CDF
of flow sizes for these two workloads is shown in Figure 4.6. For both the workloads, we
consider flow sizes up to 100 KB since these represent latency-sensitive flows [7]. We use
a server-client model in which a server sends TCP flows of sizes drawn from these two
distributions to a client. Specifically, in our testbed (Figure 4.2), host h2 sends TCP
flows to host h4.

Background Traffic. We run the Spark TPC-H decision support benchmark to
generate background traffic. It contains a suite of database queries running against a
12 GB database on each worker. The master node is h4 (see Figure 4.2) which commu-
nicates with the slave nodes h1l and h2 via the paths swl0 — swb6 — sw2 — swd — sw7
and swl0 — swb — sw2 — swd — sw8, respectively. The query job is submitted to the

master node and multiple tasks run on the three nodes.

SQR

Baseline Schemes. Recall that SQR integrates with a link failure detection and

a network reconfiguration scheme (§4.3). We consider the link failure detection method

suggested in F10 [122] (detection delay = 30 us) and two different network reconfigu-

ration methods: ShareBackup [181] (SB’) and local rerouting (LRR), in the following

configurations:

. SB’: As explained in §4.2, SB’ is our emulated version of ShareBackup that takes
an additional 730 us to restore network connectivity via backup switches after a link

failure is detected.

. LRR: Local ReRouting runs a path probing protocol [7, 109] to proactively-determine
a backup port for each primary port. When the link on a primary port is detected
to be down, the traffic is immediately re-routed to the backup port thus incurring no

network reconfiguration delay.

. SB’+SQR: SQR integrated with SB’ involves setting the backup port to be the
primary port itself since ShareBackup uses optical switching to restore connectivity
on the same port. The initial delay time is 30 us and is increased to 760 us on link

failure detection (§4.3.3).

. LRR+SQR: SQR integrated with LRR involves setting the backup ports to the ones

determined proactively. The delay time is 30 us at all times.

Link Failure Model. SQR helps with link failures where multiple paths are avail-

able. Therefore, we inject a link failure every 20 ms® between sw6 and sw10 while h2 is

sending traffic to h4 (Figure 4.2). Similar to §4.2, for SB’ we restore the failed link after

the route failure time (760 us).

5This failure injection rate only facilitates faster experimentation and does not influence the results.

4.4 Performance Evaluation 69

0.8
L 0.6
O 04 - Data Mining
0.2 P V\(eb Sea‘lrch - - -

- | |

!
100 10% 10* 10° 10° 10" 10°
Flow Size (Bytes)

Figure 4.6: Flow size distributions used in evaluation.

4.4.2 Masking Link Failures from TCP

First, we evaluate SQR’s effectiveness in masking link failures from the end-point trans-
port protocol (TCP). We compare TCP’s behavior under link failure when running SB’
alone to that when running SB’ along with SQR. h2 starts an iperf client to send TCP
traffic to an iperf server running on h4 (see Figure 4.2). To properly observe the TCP
sequence numbers from captured traces, we set TSO off (only for this experiment). We
use n2disk [143] to capture the packet traces and the tcp_probe kernel module to cap-
ture the TCP sender’s connection statistics. About 2 seconds after starting the flow, we
inject a link failure on the link between the switches sw6 and sw10. Figure 4.7 shows one
instance of the result. Results are similar when link failure is introduced at a different
location in the network.

Figure 4.7a shows the evolution of the TCP sender’s cwnd. We see that with SB’
alone, the TCP sender reduces its cwnd size drastically when there is a packet loss due
to link failure. However, when SB’ is enhanced with SQR, the link failure has no impact
on the TCP sender and the cwnd grows like the no-failure case. In Figure 4.7b, we plot
the TCP stream’s sequence number of packets as sent by the sender. With SB’ alone,
when the link fails, the TCP sender stops sending due to absence of ACKs and times
out leading to a disruption time of about 12ms. By the time the TCP sender recovers
from the timeout, SB’ has already restored the connectivity and the sender resumes by

first retransmitting the lost packets. However, when SB’ is coupled with SQR, the TCP

70 SQR

M 300
c 250 —"
1)
£ 200 B
>
2 150
» 100 — No failure
= — SB’ w/ failure
No) O L L L L L
§ 0 0.5 1 1.5 2 2.5 3 3.5
© Time (seconds)
(a) TCP congestion window
% 928 | — SB’+SQR W failure
= — SB’” w/ failure
* 924
g Retransmission
»n 92
® Disruption time = 11.8ms—w/__———
-(% 9.16 ' i ‘ ‘ ‘ “ i ‘ ‘
EJ 0O 2 4 6 8 10 12 14 16 18 20

Time (ms)

(b) TCP sequence number (zoomed view after 2 seconds)

Figure 4.7: TCP sender’s cwnd and seq number progression for SB’ with and without
SQR. Link failure occurs after about 2 seconds.

sender is not affected by the link failure and the TCP sequence number grows smoothly.

Recovery Time. While Figure 4.7 shows the TCP sender’s perspective, the per-
spective from a TCP receiver is different. Upon link failure, while the route is being
reconfigured, SQR holds the packet transmission thereby introducing a time small gap.
This small time gap, called the recovery time, is an unavoidable effect seen by a TCP
receiver. Figure 4.8 shows the CDF of the recovery time for over 30,000 TCP flows where
the link failure is masked in a SB’+SQR configuration. The recovery time is larger than
SB' route failure time (760 us) in about 90% instances for two reasons. First, SQR needs
to reorder the packets before retransmission which adds some additional recovery delay.
Second, the underlying delayed queue causes each individual packet to be delayed for a
time at least equal to the worst-case route failure time. The packets that are delayed for
longer than the actual route failure time are those that are not lost and would be de-

livered to the receiver again. Retransmitting these extra packets also contributes to the

4.4 Performance Evaluation 71

—_

0.8
L 0.6
O 0.4
0.2

650 700 750 800 850 900 950 1000 1050
Recovery Time (us)

Figure 4.8: Recovery time.

600
3 400 , b & ﬁ}
* —o— X w/ failure
§ 200 —x— X+SQR w/ failure
S —8— No failure
o 0 = | = = O
30 200 400 600 800 1000

Route Failure Time (us)

Figure 4.9: Number of packets lost for different route failure time.

additional recovery time. Note that these extra packets do not affect the TCP receiver’s
state and the resultant FCT for short flows [25]. In about 10% instances, the recovery
time was lower than 760 us. We believe that in these instances, due to “natural” gaps
in the packet transmission, the packets arrived after a link failed and before the route
was successfully recovered, thereby getting buffered for less than 760 us.

Packet Loss. The number of packets lost during a link failure depends on the
recovery scheme’s route failure time. A scheme with a higher route failure time would
stress SQR. Figure 4.9 shows the number of packets lost for a generic route recovery
scheme X, whose route failure time varies from 30 us (LRR) to 1000 us (F10 [122]).
Beyond the route failure time of 600 us, the number of lost packets does not increase as
TCP loses almost the whole cwnd and the transmission is stalled. When X is coupled

with SQR, the packet loss remains zero even when the route failure time increases.

72 SQR

5000
=

2 1000 1
§ +SQR W/ failure =

NoFailure +

0 20 40 60 80 100
Flow Size (KBytes)

Figure 4.10: FCTs of latency-sensitive web search flows [8] under link failures with
SB’+SQR as route recovery mechanism.

7?

100 £ . NoFailure -~ SB+SQR - LRR+SQR

- SB LRR
106;
.5l
3 i
LL1O4§
S REERR AR AR

100 L

<30 KB 30-60 KB 60-100 KB

Flow Size

Figure 4.11: FCTs of failure-hit web search flows [8] compared to no failure.

4.4.3 Latency-sensitive Workloads

Next, we evaluate how effective is SQR at keeping FCTs low for latency-sensitive work-
loads under link failures. We use 1,000 different flow sizes from the web and data mining
workloads (§4.4.1) and send 30 flows of each flow size yielding a total of 30,000 flows.
The flows are sent from h2 to h4 while the link between sw6 and sw10 is brought down
every 20ms (see Figure 4.2). The total route failure time is 30 us for LRR and 760 us
for SB’.

We first focus on the FCTs of flows which faced link failures i.e. we ignore the flows

that were not affected by a link failure. We showed in §4.2 that even with SB’, the FCTs

4.4 Performance Evaluation 73

1.00
L 0.95
No Failure - — - LRR — - -
© 0.90 [LRR:SQR — - SB’
0_85 u[\u\ S\B \-'-S\\O\R\H-\‘----\- Ll I Ll
1000 10000 100000 1x108
FCT (us)

(a) Data mining workload

100 [e S

w 0.95 },
[m)] 9 .
/ No Failure - — - LRR — - -
©090 1/ |RR+SQR — - SB’
0_85 il \SB\ T\SQB\\----\-- Ll I Ll
1000 10000 100000 1x108

FCT (us)
(b) Web search workload

Figure 4.12: CDF of FCTs for two workloads under link failures.

can increase by several orders of magnitude when there are link failures (see Figure 4.3).
Figure 4.10 shows that when SB’ is coupled with SQR, the FCTs for the failure-hit flows
are only slightly higher than the FCTs of no failure flows. Figure 4.11 shows the FCTs
for failure-hit web search flows when running SB’ and LRR schemes with and without
SQR. We show the results for three different ranges of flow sizes. The vertical bars show
the minimum, median, 95" percentile, 99" percentile and the maximum values of FCT.
We observe that when coupled with SQR, the tail FCTs of failure-hit flows for both SB’
and LRR are reduced by about 3 to 4 orders of magnitude. If the packets of a flow
arrive after the link has failed and before the route is reconfigured, the recovery time
(see §4.4.2) of these packets will be less than the route failure time. Therefore, even
though SB’ has a 760 us route failure time, the minimum and median values of FCT for
SB’+SQR are only about 200 us higher than the no failure or LRR+SQR. scenarios.
Figure 4.12 shows the FCT distribution for all the 30,000 flows involved in an exper-

iment run, including those not affected by link failures. For both the data mining and

74 SQR

m 50
< 40
% 30

20
e R
o 2 4 6 8 10
o SQR Traffic (Gbits/s)

Figure 4.13: Steady-state packet buffer consumption (per-port).

web search workloads, the tail FCT of SB’ is slightly worse than LRR. This is because
SB’ has a longer route failure time compared to LRR. While SQR helps in cutting down
the overall tail FCT for both SB’ and LRR, its reduction in FCT for LRR is slightly
more than that for SB’. This is because although SQR prevents packet loss, it inflicts a

recovery time delay (see §4.4.2) which is higher for SB’ than that for LRR.

4.4.4 Overhead

Finally, we investigate the overheads incurred by SQR by measuring: (i) the packet
buffer consumption, (ii) the reduction in switch throughput; (iii) the additional hop
latency on the switch; and (iv) the hardware resources required when implemented on a
programmable switch.

Packet Buffer Consumption. SQR uses the switch packet buffer to cache packets
for the delay time (see §4.3.3). Since SQR uses a ring of queues, the packet buffer
consumption at any time is equal to the total number of cached packets across the
different caching queues. To measure the packet buffer consumption, we configured
SQR’s Multi-Queue Ring to use only a single queue (just for measurement). Then using
the queue depth provided by the programmable dataplane, we measured the depth of the
queue to obtain the packet buffer consumption. During steady-state (no link failure),
SQR only caches packets for the link failure detection delay. Therefore, its steady-state
packet buffer consumption depends only on the link failure detection mechanism. For

a generic route recovery scheme (which we denote with X), Figure 4.13 shows how the

4.4 Performance Evaluation 75

i1 2 3 4 5 6 7 8 9 10
SQR Traffic (Gbits/s)

Throughput (Gbits/s)

Figure 4.14: Impact of SQR processing on normal line-rate traffic.

steady-state packet buffer consumption (per-port) increases with SQR traffic volume
while using F10’s link failure detection mechanism (detection delay = 30 us). Clearly,
the packet buffer consumption increases with increase in SQR traffic. For a 10 Gbps
link, SQR will only need to handle up to 10 Gbps traffic in the worst case, even when
there is an incast (>10 Gbps) of incoming latency-sensitive traffic. This is because SQR
protects traffic on the egress link whose rate is constrained by the link speed. Therefore,

the worst case packet buffer consumption per SQR~enabled port is given by,

Worst Case Pkt Buffer = Link Speed x Delay Time (4.1)

From equation 4.1, we would expect the worst-case steady-state buffer consumption
for a 10 Gbps port with a 30 us failure detection delay to be 37.5 KB. This matches
our experimental results in Figure 4.13. However, when a link failure is detected, the
delay time is increased to 760 us in case of SB’+SQR. In this instance, according to
equation 4.1, the buffer consumption for SB'+SQR would be 950 KB in the worst case.
Fortunately, the failed-state is very short-lived (and will last only until the route is
reconfigured), after which SQR returns to steady-state caching.

Impact of SQR on Normal Traffic. SQR incurs some additional egress pipeline
processing to send insufficiently delayed cached packets back to the BQE (§4.3.1). To
measure the impact of SQR’s processing (maintaining a delayed queue) on the normal
traffic, we configure SQR’s Multi-Queue Ring to contain only a single caching queue on

a port, say p1. We then start line rate TCP (10 Gbps) background traffic whose egress

76 SQR

port on the switch is also p;. The background traffic uses a queue on port p; that is
different from the SQR’s caching queue, but has the same scheduling priority. A SQR-
enabled flow (SQR traffic) is then started on another port ps. All packets from this flow
are cached using p;’s caching queue.

Figure 4.14 shows the throughput of the line-rate background traffic for different
rates of SQR traffic. We see that even at 10 Gbps, SQR traffic will occupy only about
750 Mbps of egress processing. This means that as long as the normal traffic is less than
9.25 Gbps, it will not be impacted by the processing overhead of 10 Gbps SQR traffic.
In other words, a single 10 Gbps port can simultaneously support 9.25 Gbps of normal
traffic and egress processing of 10 Gbps SQR traffic. Given that SQR uses dynamic queue
selection (§4.3.4) to utilize only the LeastLoadedPort each time the next caching queue
in the Multi-Queue Ring is chosen, the likelihood of negatively impacting the normal
traffic is very low.

Switch Processing Latency. SQR is mostly non-intrusive to the SQR-protected
original traffic, but incurs some additional dataplane processing. To measure the latency
added by this additional processing, we send traffic from hl to h2 along sw7 — sw4d —
sw8 (Figure 4.2). When a packet arrives at the ingress pipeline of sw7 or sw4, we add
the ingress timestamp (IngressTs) to it. The difference between the two IngressTs of
adjacent switches is the hop latency. We found that, on average SQR adds a negligible
4.3 s of additional hop latency compared to a P4 program that does only L3 forwarding.

Hardware Resources Requirements. In Table 4.2, we compare the hardware
resources required by SQR to that required by switch.p4, which is a close-source pro-
duction P4 program that implements all the network features of a typical datacenter
ToR switch. SQR uses a relatively larger proportion of stateful ALUs for operations
such as calculating the ElapsedTime, determining the LeastLoadedPort, and compar-
ing the PktTag with the NextPktTag. SQR’s logic is achieved using exact match-action

tables which require SRAM. However, SQR’s overall resource consumption remains low.

4.5 Discussion 77

Table 4.2: Resource consumption of SQR compared to switch.p4

Resource switch.p4 SQR switch.p4+ SQR
Match Crossbar 51.56% 10.22% 61.59%
Hash Bits 32.79% 13.28% 44.75%
SRAM 29.58% 15.31% 41.35%
TCAM 32.29% 0.00% 32.29%
VLIW Actions 36.98% 6.77% 43.23%
Stateful ALUs 18.75% 15.63% 33.33%

Also, since the combined usage of all resources by switch.p4 and SQR is less than 100%,

switch.p4 can easily be enhanced by incorporating SQR.

4.5 Discussion

Hardware-assisted Link Failure Detection. High-speed network cable connectors
such as QSFP+ and QSFP28 “squelch” their data input/output lanes on detecting loss
of input/output signal levels [167]. Modern switching ASICs are able to detect such
data lane squelching and provide primitives for fast failover [139]. We investigated such
hardware-assisted link failure detection in our testbed using a Barefoot Tofino switch and
an Intel XXV4DACBLIM (QSFP28 to 4xSFP28) cable. We found the worst-case detec-
tion delay to be around 2.755 us. This implies that, with hardware support, link failure
detection delays are even lower, and SQR’s steady-state packet buffer consumption can
be further reduced.

Alternatives to on-chip Packet Buffer. An alternative way to store cached
packets could be to leverage the relatively large (~4 GB) DRAM available on the switch
CPU. However, the switch CPU’s limited bandwidth on its interface to the ASIC (PCle
3.0 x4 [33]) and its limited processing capacity make this approach infeasible for imple-
menting SQR. This limitation is common for all switches including fixed-function [56]
or partially programmable [33]. In highly congested networks where the on-chip packet

buffer is a scarce resource, using expandable packet buffers implemented via DRAM and

78 SQR

connected directly [30, 55] or indirectly [112] to the ASIC is a better approach, since
a CPU is not required to access the DRAM. Note that SQR’s overall architecture still
remains the same even when implemented with expandable packet buffer.

Handling Traffic Surges. SQR exploits the availability of spare buffer and egress
processing from the least loaded ports dynamically. A prior measurement study has
shown that high utilization and thus congestion happens on a small number of ports
and not on all the ports of a switch at the same time [188]. Nevertheless, there remains
a small possibility that when a switch is saturated on all ports, SQR could make the con-
gestion worse by partially occupying the packet buffer. To address this, SQR implements
a backstop mechanism that can dynamically pause packet caching (within nanoseconds)
when we detect high buffer consumption, and resume only when spare buffer becomes
available. With increasing adoption of delay-based congestion control protocols in dat-
acenters [131], we expect such high buffer pressure events that can overwhelm an entire
switch’s packet buffer to be rare.

Deployability and Fault Tolerance. SQR runs independently on a singleton
switch and thus SQR-enabled switches can be deployed incrementally in a network. A
SQR-enabled switch adds link failure tolerance for each port, i.e. it can handle failures
on multiple links emanating from it. Since link failures tend to be uncorrelated [73],
a partial deployment of SQR-enabled switches can effectively bring down the impact
of link failures. SQR will also be effective against failures such as line-card or switch
failures that cause link failure detection schemes to report corresponding link failures.
One limitation is that SQR will not be able to help in the event of link failures between
the end hosts and the ToR switches due to the lack of alternative paths. Also, it is
not designed to handle packet corruption losses. For datacenter networks, since most
switches have higher availability than the links and concurrent traffic bursts on multiple
switch ports [188] and concurrent link failures are rare [73], the probability of packets

being lost due to simultaneous link and switch failures will be low.

4.6 Summary 79

Higher Link Speeds. SQR can scale to higher link speeds (25/50/100 Gbps) with
an increase in buffer consumption (see equation 4.1). For a 100 Gbps port with a 30 us
link failure detection time, the worst-case steady-state buffer consumption is expected
to be 375 KB. However, on average, latency-sensitive short-flows only comprise about
20% of the total bytes in typical datacenter networks [8]. Therefore, even at 100%
link utilization on a 100 Gbps link, we expect SQR to handle about 20 Gbps of latency-
sensitive traffic. For this average case, the worst-case steady-state buffer consumption is
about 75 KB per port. When the link fails, the average case requirement of SB'+SQR
spikes momentarily to 1.9 MB per port. Switching ASICs supporting 100 Gbps switches
currently have around 42 MB (> 1.9 MB) of packet buffer [57]. Also, the on-chip packet
buffer size for ASICs increases with supported link speeds [179]. Therefore, SQR’s

consumption of packet buffer can be supported comfortably by modern ASICs.

4.6 Summary

Achieving low and bounded FCTs under link failures is a step towards providing SLA
guarantees on network latency in datacenter networks. We show that existing link
failure management techniques fail to keep the FCTs low, as they cannot completely
eliminate packet loss during link failures. By enabling caching of small number of recently
transmitted packets, SQR completely masks packet loss during link failures from end-
hosts. Our experiments show that SQR can reduce the tail FCT by up to 4 orders of
magnitude for latency-sensitive workloads. While caching packets on the switch is an
obvious idea, it is not straightforward to achieve and was not feasible until now. The
significant reduction in route recovery times and increase in packet buffer sizes have
made it feasible, while our design, implementation and evaluation of SQR demonstrates
that it is both effective and practical. Our work suggests that on-switch packet caching

would be a useful primitive for future switch ASICs.

Chapter

LinkGuardian: Masking Corruption
Packet Losses in Datacenter Networks

with Link-local Retransmission

In Chapter 4, we presented SQR which masks the impact of fail-stop link failures and
prevents them from increasing the tail FCTs. SQR, however, does not work for cor-
rupting links i.e. links with gray link failures which cause random packet losses. In this
chapter, we present LinkGuardian, an in-network retransmission scheme designed to ad-
dress the problem of increased tail FCTs due to gray link failures. Here, we first present
3 important trends and highlight why they make it important to handle gray link fail-
ures in the general context of datacenter networking (Section 5.2). We then present the
detailed system design of LinkGuardian (Section 5.3) including its deployment strategy
(Section 5.3.6) followed by results from an extensive evaluation (Section 5.4). Finally,

we discuss other related issues (Section 5.5) before concluding the chapter (Section 5.6).

82 LinkGuardian

0

o 10
I
o 1072
0 modulation
S 104 bk of/ . 3 I : : : :
j 50GBASE-SR (FEC) —e— -
E‘J 6 : : : / 25GBASE-SR &~
(8] 10 (" . .) S 25GBASE-SR (FEC) - :
E d : : : : 10GBASE-SR =% :

10-8]]]]]]] I J

9 10 11 12 13 14 15 16 17 18
Optical Attenuation (dB)

Figure 5.1: Effect of optical attenuation on high speed Ethernet standards with higher
baudrates and denser modulation.

5.1 Introduction

Optical links are commonly used as switch-to-switch links in modern datacenter net-
works [192]. Unfortunately, optical links tend to be susceptible to data transmission
errors arising from external physical factors such as physical damage, bending, or con-
tamination due to airborne dirt particles [61, 192]. As a result, packet losses due to
corruption on optical links in large warehouse-scale datacenters are common. AliBaba’s
recent study of hundreds of real-world service tickets showed that about 18% of the
packet drops that caused network performance anomalies (NPAs) were due to packet
corruption [189]. Another large-scale study across 15 Microsoft datacenters consisting
of 350K optical links showed that the number of packets lost due to corruption is com-
parable to those lost due to congestion [192].

At the same time, Ethernet link speeds continue to increase, having increased from
25G [91] in 2016 to 400G [94] in recent years. This increase has been achieved through
a combination of using multiple parallel PHY lanes, higher baudrate, and denser mod-
ulation. Figure 5.1 shows the result of a measurement experiment (details in §5.2.1)
where we can see that, as the link speeds continue to increase through the use of higher

baudrate (from 10G to 25G) and denser modulation (from 25G to 50G), optical links

5.1 Introduction 83

are becoming more susceptible to optical attenuation and thus corruption packet loss.

Optical corruption can only be remedied by physically repairing the damaged links,
which can take between several hours to days [192]. During this time, the impact of
corruption can only be mitigated. The current state-of-the-art approach to mitigate
corruption packet loss is to disable the corrupting links while maintaining a certain
minimum network capacity [182, 192]. However, this approach is not sufficient, as it is
often not feasible for some corrupting links to be disabled without violating capacity
constraints. Such links will continue to cause packet drops thereby negatively impacting
both throughput and latency-sensitive flows. Data from Microsoft datacenters shows
that up to 15% of the corrupting links cannot be disabled under realistic capacity con-
straints [192].

In this paper, we apply the classical loss recovery strategy of link-local retransmission
for mitigating corruption packet loss in datacenter networks. Link-local retransmission
has been studied extensively [18, 19, 148] and deployed widely in wireless networks [1,
2, 88, 89]. It has desirable properties such as the recovery overheads are proportional
to the corruption loss rate and localized to only the corrupting link. It can achieve sub-
RTT recovery and since it is agnostic to the end-hosts, it is amenable to any transport
protocol including RDMA. Yet, despite these advantages, link-local retransmissions have
never been deployed in the context of datacenter networks to the best of our knowledge.

We suspect that this is because deploying link-local retransmission in datacenter
networks is challenging for the following reasons: first, link-local retransmission requires
packet buffering while datacenter switch buffers are generally small. The problem is
further exacerbated by high link speeds that will generally require more buffering. Sec-
ond, most flows in datacenter networks are short (see Figure 5.3), which increases the
probability of tail packet loss. Such tail losses need to be detected and recovered at mi-
crosecond scales to provide bounded tail FCT guarantees and meet the stringent Service

Level Agreements (SLAs) [51, 130, 177, 189]. Third, RDMA is being widely deployed in

84 LinkGuardian

modern datacenters [70, 80, 130, 190] which is more sensitive to packet reordering than
TCP [84]. Therefore, packet ordering needs to be preserved while performing link-local
retransmission.

In this paper, we show that, with modern programmable switches, it is now feasible to
implement link-local retransmission in datacenter networks. Our system, LinkGuardian,
can overcome the above challenges by implementing the following mechanisms: (1) a fast
and efficient (low overhead) loss detection and recovery protocol to keep the recovery
delay and thus the buffering requirement small (§5.3.1 and §5.3.4); (2) a novel mecha-
nism to detect tail packet losses quickly and efficiently using a self-replenishing queue of
“dummy packets” without the need for a timeout (§5.3.2); and (3) a “reordering buffer”
at the receiver switch to maintain packet ordering along with a PFC-based backpres-
sure mechanism to ensure that the buffer does not overflow (§5.3.3). While individually
these techniques are relatively straightforward, our key insight is that their combination
is sufficient to make link-local retransmission feasible in modern datacenter networks.

Conventional wisdom says that link-local retransmissions need to preserve packet
ordering to prevent the transport layer from triggering spurious loss recovery and re-
duction of the sending rate [8, 11, 18, 24, 190]. We will show that in the context of
datacenters, it is not always necessary to preserve packet ordering (§5.4.4). The key
insight is that most flows in datacenter networks are short [130, 153] and most flows fit
within one packet and require only 1 RTT to complete [130] (see Figure 5.3). When a
flow fits within a single packet, we do not need to worry about ordering for both TCP
and RDMA. For multi-packet TCP flows, out-of-order retransmission can still provide
significant corruption loss mitigation for TCP flows at 100G speeds even if we cannot re-
transmit within TCP’s reordering window. This is because even when a TCP flow spans
multiple packets, it lasts only a few RTTs (flows being short). This means that if there
is a corruption loss, it mostly occurs just once and thus reordering happens at most once

which has minimal impact on the FCT. To this end, we show that a non-blocking vari-

5.1 Introduction 85

ant of LinkGuardian (that implements out-of-order retransmission) not only has lower
overheads but can scale better to higher link speeds (§5.4.2). However, for multi-packet
RDMA flows, we currently still need to preserve ordering due to its go-back-N transport
recovery.

LinkGuardian is currently implemented on an Intel Tofino switch and our testbed
evaluation shows that (i) for a 100G link with a loss rate of 1073, LinkGuardian can
reduce the loss rate by up to 6 orders of magnitude while incurring only 8% reduction
in the link’s effective link speed and requiring less than 90 KB of packet buffer; and
(ii) LinkGuardian improves the 99.9*" percentile FCT for TCP and RDMA by 51x and
66x respectively by handling tail packet losses at sub-RTT timescales. Furthermore,
LinkGuardian is complementary to existing solutions for handling corrupting links. By
augmenting CorrOpt [192] with LinkGuardian, the corrupting links that cannot be dis-
abled due to network capacity constraints can run with orders of magnitude lower loss
rate without affecting application performance. By doing so, CorrOpt [192] when aug-
mented with LinkGuardian can reduce the total loss rate in a large datacenter network
by at least 4 orders of magnitude and also allow network operators to operate the net-
work at a higher average capacity, that was not previously possible. In a network’s
operation, LinkGuardian lies dormant and incurs no cost until it is activated to protect
a corrupting link.

The main drawback of our current implementation of LinkGuardian is that it uses
recirculation for packet buffering because of hardware constraints (Tofino). With more
advanced hardware like the Tofino2 [117], LinkGuardian could be realized more effi-
ciently. We provide a sketch of how this can be done (§5.5). Nevertheless, we believe
that we have made a strong case that link-local retransmission is both practical and

effective for modern datacenter networks.

86 LinkGuardian

Loss Bucket % Links
[10-8,107%) 47.23%
[107°,107%) 18.43%
[1074,1073) 21.66%

[10734) 12.67%

Total 100%

Congestion
=== Corruption

= B
OCDIO
I

10°®

(TR LA
S > P e S

NI

Date (mm-dd)

Packet Loss Rate

Figure 5.2: Distribution of corruption loss rates and time-varying corruption on a
single link as observed by Zhuo et al. [192]

5.2 The Case for Mitigating Link Corruption

The use of optical fiber links is common in datacenter networks because they can support
high data rates over longer distances (~100m). However, optical fiber is susceptible to
bit errors due to various physical factors. While the physical factors can be varied, a
majority of them lead to a single common symptom of optical attenuation by causing
a drop in the RX optical power at the receiving transceiver [192]. This reduced RX
optical power leads to decoding errors and thus corruption packet loss. In Figure 5.2, we
reproduce the loss rate distribution of corrupting links as observed by Zhuo et al [192].
We also note that the loss rate on a single link can vary with time.

In this section, we present measurement studies that suggest that packet corruption
cannot be ignored in datacenter networks because of (i) increasing link speeds; (ii) most

flows being short; and (iii) increasing adoption of RDMA.

5.2.1 Impact of Higher Link Speeds

Ethernet link speeds have increased by a factor of more than 10 over the past 8 years.
This increase has been achieved through a combination of 3 factors: (i) increase in the

number of parallel PHY lanes, (ii) increase in the baud rate (symbol rate), and (iii) use

5.2 The Case for Mitigating Link Corruption 87

of denser modulation that packs more bits per symbol. While adding parallel PHY lanes
does not change the fundamental characteristics of signal transmission, an increase in
the baud rate and use of denser modulation does.

To understand the impact of higher baud rates, following the methodology of Zhuo
et al. [193], we used a Variable Optical Attenuator (VOA) to add a configurable optical
attenuation on an OM4 grade fiber link. We then sent standard MTU sized packets
(1,518 B frames) through the optical link and measured the packet loss rates using four
different configurations: (1) a pair of 10GBASE-SR transceivers [64] (10.3125 GBd); (2)
a pair of 25GBASE-SR transceivers [66] that use the same modulation as 10GBASE-
SR but at a higher baud rate (25.78125GBd); (3) the same setup as (2) but with
the optional Ethernet Reed-Solomon (RS) FEC enabled; and (4) a pair of 50GBASE-
SR transceivers [65] that use a similar baudrate as 25GBASE-SR (26.5625 GBd) but a
denser state-of-the-art PAM4 modulation along with the compulsory Ethernet RS FEC.

In Figure 5.1, we plot the packet loss rates for different levels of optical attenuation
for the four different configurations. Clearly, with higher baudrate, 25GBASE-SR is
more susceptible to optical packet corruption compared to 10GBASE-SR. Even with the
RS FEC enabled, 25GBASE-SR performs poorly compared to 10GBASE-SR and can
result in packet loss rates up to 103. Also, with denser modulation, 50GBASE-SR is
more susceptible to optical packet corruption compared to 25GBASE-SR (with similar
Ethernet RS FEC enabled).

5.2.2 Most flows are short flows

In Figure 5.3, we plot the flow size distribution of several industry datacenter work-
loads [8, 16, 119, 154, 166]. We see that most flows are short, even shorter than the
standard MTU sizes of 1500 B and 1024 B used by TCP and RDMA respectively. As a
result, these flows will fit within a single packet and complete within 1 RT'T under normal

conditions. Except for the 2010 DCTCP web search workload [8], all other packet traces

88 LinkGuardian

Google all RPC

Meta Hadoop
Alibaba storage —
DCTCP web search —

10 10! 102 103 104 10> 10° 10/
Message/ Flow Size (Bytes)

CDF

Figure 5.3: Flow size distribution of several industry datacenter workloads from 2008
to 2019 [8, 16, 119, 154, 166].

have flow sizes less than 50 KB (~30 packets) at the 75" percentile allowing them to
complete within only a few RTTs. The key takeaway is that because the flows last only
a few RT'Ts, the additional 1 RTT delay incurred in end-to-end recovery of a corruption

packet loss is expensive.

5.2.3 Impact of RDMA Workloads

With the introduction of RoCEv2 [15], the use of RDMA in datacenters networks is now
becoming increasingly commonplace [70, 80, 130, 190]. Unlike traditional transport pro-
tocols, RDMA requires a lossless network fabric, which is commonly achieved through
NIC-based congestion control such as DCQCN along with Ethernet flow control to pre-
vent congestion packet loss [190]. This unfortunately makes RDMA traffic extremely
vulnerable to corruption packet loss.

To illustrate the impact of corruption loss on TCP and RDMA workload, we mea-
sure the FCT of flows with 143 bytes, the most frequent flow size in Google’s all RPC
workload [166]. We use 25G Mellanox CX5 NICs connected through a 25G network. For
TCP, RT O, is set to 1 ms. For RoCEv2, we use a one-sided RDMA_WRITE operation
using NIC-based reliable delivery (RC [145]) which we found to have a RT'O of ~5ms.

We chose RDMA_WRITE as it represents a shared memory write operation [187].

5.2 The Case for Mitigating Link Corruption 89

1 e Jeee e ee
FIAEEEERE R RN XN \.l o ©
0.998 [S
o ooses b o BT
© 0.994 A B DCTCP(NoIoss) —
0,992 v DCTCP(103Ioss) ----- -
0.99 e —— o
10 100 1000 10000
Message/Flow Completion Time (us)
(a) DCTCP.
1 ------------ g‘:'“,‘
0.998 [f i B608X FORREE
5 0.9% [of ,".'.".‘.“.':.‘.“.‘;'.“.‘.“.".‘.".‘.".".‘.".';'.“.‘.".".‘-“-‘-"-‘-‘". “““““
© 0.99%4 A RDMA_WR (No loss) —
0.992 [S RDMA WR(103Ioss)--°--‘
0.99 e : -
100 1000 10000

Message/Flow Completion Time (us)

(b) RDMA WRITE.

Figure 5.4: Top 1% FCTs for 143B flows on a 25G link with and without 103 corruption
packet loss.

We use a Variable Optical Attenuator (VOA) to configure 2 different packet loss rates:
(i) 0 (baseline); (ii) ~1073. In all our experiments, there is no cross traffic and only a
single flow exists in the system at any given time. This ensures that any performance
degradation observed is solely due to corruption packet loss and not due to congestion-
induced delay or loss.

In Figure 5.4, we plot the 99" percentile FCTs for 300k trials, running over DCTCP
and RDMA. Under no loss conditions, RDMA clearly lives up to its promise by achieving
~3x lower FCT than DCTCP at the 99.9*" percentile. However, under 10 corruption
packet loss, the FCTs for both RDMA and DCTCP degrade sharply yielding 160.8x and
18.1x higher FCT at the 99.9'" percentile, respectively. While it may appear that using
aggressive RTO can mitigate this increase in tail FCT, there are several reasons outlined

by Lim et al. [120] due to which aggressive RTO is not effective and millisecond-level

90 LinkGuardian

RTO remains to be the industry practice.

5.3 LinkGuardian

The corruption loss rates in real-world datacenters tend to be small (see Figure 5.2).
This makes is it possible for LinkGuardian to mitigate the impact of corruption packet
loss using link-local retransmission. To detect link corruption, we use a low-cost scheme
that continuously monitors all optical links in the network (see Appendix A.2). Until it
is activated, LinkGuardian lies dormant and imposes no cost on the network.

In this section, we provide an overview of LinkGuardian’s design by describing a basic
link-local retransmission (LL-ReTx) scheme, the challenges of implementing LL-ReTx at
line rates, and, finally, the key ideas that make LL-ReTx practical in the context of
datacenter networks.

Basic LL-ReTx. LinkGuardian can be modelled as a protocol running between
a “sender” switch and a “receiver” switch (see Figure 5.5). The sender adds a mono-
tonically increasing sequence number (seqNo)! to the transmitted packets and buffers
a copy of the recently sent packets (in Tx buffer). These sequence numbers are used
by the receiver to detect corruption packet losses. When there is no packet loss (seqNo
1-2), the receiver piggybacks the cumulative ACK information on top of reverse direc-
tion traffic (Ack2). The sender then drops the buffered copies of successfully delivered
packets (seqNo 1-2). In case of a corruption packet loss (seqNo 3 in Figure 5.5), the
receiver detects the gap in the sequence number when it receives the subsequent packet
(seqNo 4). The receiver then sends a high-priority loss notification to the sender (Lost3)
and the sender will retransmit the packet with seqNo 3 with high priority. More details
on sender’s packet buffering and retransmission can be found in §A.1.2.

Challenges. While this basic LL-ReTx scheme is sufficient to achieve LL-ReTX, it

! The sequence number is added per sender-receiver link pair.

5.3 LinkGuardian 91

Sender SWltCh M = Egress Mirroring F——————— Rece'ver SW'tCh
. Tx Buffer = LinkGuardi | Rx Buffer 1 -
Decreasing 3 = Lin _uar ian | | Decreasing
Strict Priority key idea o I Strict Priority
ReTx pkts <{Lost3 H Loss Notifications

Normal pkts < [Ack2H Normal pkts

r-y — T T~ | rT T TeEe— |7 T |
I Dummy pkt M I I M ACK pkt
12 |_> | I [M <—l 1 :

________________ - SRS |

Figure 5.5: LinkGuardian Design Overview.

is not practical in a datacenter because of the following reasons:

1. Small buffers: Since the switches in datacenter networks have shallow buffers, the
sender needs to receive the ACKs fast enough so that it can drop the buffered packets
fast enough to keep the Tx buffer usage small. If we piggyback ACKs naively, they
could get delayed by an arbitrary amount depending on the reverse direction traffic.

2. Short flows: Since most datacenter flows are short (see Figure 5.3), mostly 1 packet,
it is not always possible to detect the loss of such packets based on the gap in the
sequence numbers. In Figure 5.5, if the packet with seqNo 5 belonging to a short flow
is lost, then the basic LL-ReTx scheme cannot detect the same until a subsequent
packet (seqNo 6) is transmitted. This can lead to high-tail FCTs.

3. RDMA flows: The use of RDMA in datacenters networks is now becoming increas-
ingly commonplace [70, 80, 130, 190]. Compared to TCP, RDMA performance is very
sensitive to packet ordering due to the lack of a “reordering window” [84]. The basic
LL-ReTx above does not preserve the original packet ordering e.g. when seqNo 3 is
lost in Figure 5.5.

LinkGuardian incorporates three key ideas to address these challenges to make LL-

ReTX practical in datacenter networks:

1. Self-replenishing queue of ACK packets (§5.3.1): LinkGuardian implements
a strictly low-priority queue with one ACK packet at the receiver switch ((1) in Fig-
ure 5.5). This means that there will always be packets in the reverse direction even

when there is no reverse direction traffic to piggyback the ACKs.

92 LinkGuardian

2. Self-replenishing queue of dummy packets (§5.3.2): LinkGuardian also imple-
ments a similar strictly low-priority queue of dummy packets at the sender switch ((2)
in Figure 5.5). The dummy packets get sent out as soon as there is no regular traffic
to allow the receiver to quickly detect tail packet losses (e.g. seqNo 5 in Figure 5.5).

3. Reordering Buffer without Overflow (§5.3.3): To preserve packet ordering,
LinkGuardian implements a reordering buffer on the receiver ((3) in Figure 5.5). A
naive design would result in buffer overflow at today’s datacenter lines rates. To
prevent this, we use a PFC-based backpressure algorithm to throttle the sender when
necessary.

Scope and assumptions. Our goal is not to completely eliminate corruption packet
loss because it is too costly to achieve such a guarantee. Instead, we focus on the more
modest goal of reducing the corruption packet loss rate to an operator-specified target
level. To achieve the target effective loss rate, LinkGuardian also handles the case that
the retransmitted copy of the packets could get lost too (§5.3.4). For the following
sections, we assume that a corrupting link corrupts packets only in one direction which
is the case with 91.8% of corrupting links in production [192]. However, we should
highlight that handling bidirectional corruption is simply a matter of running a parallel
instance of LinkGuardian in the reverse direction.

Operation modes. LinkGuardian in its default mode preserves packet ordering.
However, we also allow running LinkGuardian in a simple mode called LinkGuardianNB,
where we disable the mechanism that maintains packet ordering. Our results in §5.4.4
show that LinkGuardianNB is effective in mitigating corruption packet loss for short
TCP flows because of the small flow sizes as well as TCP’s support for reordering window

and selective recovery.

5.3 LinkGuardian 93

5.3.1 Fast ACKs for minimum Buffer Overhead

In a no loss case, based on the ACK information from the receiver switch, the sender
switch clears its buffer by dropping buffered packets that have been successfully received.
Normally, the ACK information from the receiver is piggybacked on regular packets that
are sent in the reverse direction to reduce overhead. However, by simply doing so, we
cannot ensure that the ACK information is conveyed fast enough if the traffic rate on
the link in the reverse direction is too low, or worse, if there is no traffic in the reverse
direction.

To address this problem, we introduce a novel self-replenishing ACK packet queue
that has a strictly lower priority compared to the normal packet queue at the receiver.
The ACK packet queue is initialized with a single minimum-sized explicit ACK packet
which will be sent as soon as the normal packet queue is empty. In addition, every time
this ACK packet is sent, we replenish the queue by adding a new explicit ACK packet

back to the same queue using egress mirroring. This is illustrated in Figure 5.5.

5.3.2 Tail Losses for Single-Packet Flows

Single-packet flows are relatively common [8, 16, 119, 154, 166]. Since losses are detected
at the receiver based on the gap in the sequence number, when the packet belonging to
a single-packet flow is corrupted and lost, the receiver would not detect the loss until
another packet is transmitted on the link. The most common approach to detect tail
losses is to employ retransmission timeouts. However, timeouts need to be set conserva-
tively considering worst-case delays in order to avoid spurious retransmissions [120]. To
eliminate the need for a timeout, we add another self-replenishing queue at the sender
with a single “dummy” packet. This means that the sender will always have a packet to
send even if there are no normal packets and the receiver will be able to detect the gap

in sequence numbers even when there is corruption loss of a single-packet flow.

94 LinkGuardian

Algorithm 5: De-Duplication & In-Order Recovery

Applied to: protected, protected-reTx, recirculating rx-buffered pkts
if pkt.seq_no == ackNo then

forward();

ackNo = ackNo + 1;

else if pkt.seq-no > ackNo then

mark_pkt_as_rx_buffered();

recirculate(); // will be subjected to the algo again

else if pkt.seq_no < acklNo then
| drop(); // de-duplication

® N OO A W N

5.3.3 Reordering Buffer without Overflow

To preserve packet ordering, the receiver switch will need to buffer packets whenever
there is a corrupted packet until the sender receives the loss notification and successfully
retransmits the lost packet. The receiver achieves this by first using recirculation to
buffer the subsequent packets that arrive after a packet loss is detected. Since the
packets are buffered using recirculation, they would get reordered and we need a method
to ensure that the packets are forwarded in the right order after the lost packets are
received from the sender. Furthermore, when more than 1 copy of the retransmitted
packet is received (§5.3.4), the extra copies need to be dropped (de-duplication). We
achieve these requirements by using a single state variable called ackNo which determines
the correct next packet to be forwarded ahead. Buffered packets are continuously checked
and put back into the recirculation buffer until it is their turn to be forwarded next. The
pseudo-code for this is shown in Algorithm 5.

Preventing transmission stalls. In spite of our best efforts, there is still a small
but non-zero probability that a retransmission will not be successful. Because we buffer
packets at the receiver until all corrupted packets are received, this could stall the trans-
mission indefinitely and cause the receiver recirculation buffer to overflow. To handle
this rare but potentially fatal event, we implement a timeout at the receiver. If a re-

transmission does not occur within the timeout period, the receiver ignores the lost

5.3 LinkGuardian 95

ll1 MTU pauseThreshold resumeThreshold
\I | —

traffic rate from -'(_)-_> effective
corrupting link —] link speed

tﬂight_resume

Figure 5.6: Logical view of receiver-side ingress buffer (recirculation port queue).

packet, increments the ackNo and continues with the remaining packet transmissions.
The ackNoTimeout is set to a value greater than the maximum expected delay in receiv-

ing a retransmission after a packet has been found to be lost.

5.3.3.1 PFC-based Backpressure

Once a corrupted packet is detected, the receiver switch will stop forwarding packets and
start buffering packets in its recirculation buffer. Because of the high link speed, there
is a risk that the recirculation buffer might overflow even before the sender is notified of
the packet loss and it successfully retransmits the lost packet. To avoid this problem,
we employ a PFC-based pause-resume mechanism that asserts small PFC pauses on the
TX MAC of the corrupting link on the sender switch. We pause only the normal packets
queue (see Figure 5.5) so as not to affect the retransmission of the lost packets. The
underlying principle is that we want to pause the transmission of the normal packet
queue on the sender switch just enough to keep the recirculation port queue usage on
the receiver switch to a small non-zero value which we set as 2MTU (see Figure 5.6).
We note that there is a short delay before the PFC pause/resume mechanism takes
effect after the receiver decides to send a pause/resume signal. Let tf1ight resune De the
delay from when the receiver switch sends a PFC resume message to when the receiver
switch receives the first packet from a previously paused regular packet queue at the
sender. During this period, when the regular packet queue on the sender switch is
paused, the recirculation port queue will continue to drain. The resumeThreshold is

therefore set to a value such that during the tf1ignt resune time, the queue will not be fully

96 LinkGuardian

Algorithm 6: PFC-based Backpressure

Input: curr_qdepth; // recirculation port’s queue size

Initialization: curr_pfc_state = resume;

if curr_gdepth ;= pauseThreshold &€ curr_pfc_state == resume then
send_pfc_pause();

curr_pfc_state = pause;

else if curr_gdepth j= resumeThreshold €€ curr_pfc_state == pause then
send_pfc_resume();
curr_pfc_state = resume;

(=~ BN, B SR VI

emptied (Figure 5.6). Otherwise, the outgoing egress link at the sender will be paused
excessively. Following DCQCN’s recommendation [190], we set the pauseThreshold
by leaving 2MTU worth of space as hysteresis. The PFC pause/resume mechanism is
described in Algorithm 6. The recirculation port’s queue size is obtained in the dataplane
on a per-packet basis. Hence, Algorithm 6 uses a flag curr_pfc_state to avoid sending

redundant pause/resume messages.

5.3.4 Mitigating Potential ReTx Losses

If the link corruption rate is high, it is plausible that a retransmitted packet might also
be lost. To improve the odds of a successful retransmission, the sender retransmits not
one, but multiple copies of a buffered packet. Recall that our goal is not to completely
eliminate corruption packet losses, but to reduce the loss rate to an operator-specified
target level. Hence, the number of packets that are needed to be retransmitted to achieve

this target with high probability is given by:

logio(target_loss_rate) 1) (5.1)

eTx copies = ceil
redx copl et <l0g10(a0tuallossrate)

For example, if a maximum loss rate of <107 is desired by the network operator and the
loss rate on a corrupting link is 1074, then retransmitting a single copy of the buffered

packet would suffice to reduce the effective loss rate to 108, For a higher loss rate such

5.3 LinkGuardian 97

as 103, 2 copies would be required. Note that the actual loss rate in Equation 5.1 is

measured by a low-cost control plane based scheme (details in §A.2).

5.3.5 Implementation Details

LinkGuardian is implemented on an Intel Tofino programmable switch with about 1,800
lines of P4 code and runs entirely in the dataplane. For each packet to be protected,
the sender switch adds a 3-byte LinkGuardian data header, consisting of a 16-bit seqNo
and other metadata: the segNo era and the packet type (original or retransmitted).
To piggyback the updated latestRxSeqNo (ACK) on the reverse direction traffic, the
receiver switch adds a similar 3 byte LinkGuardian ACK header. The self-replenishing
queues of the dummy and the ACK packets are initialized by injecting a single minimum-
sized packet from the switch control plane. All the state variables are maintained on a
per-port basis using SRAM-based register memory.

Handling segNo Wrap-around. Once LinkGuardian is activated on a link, the
link is expected to carry billions if not trillions of packets in its lifetime. Therefore, any
finite-sized segNo would wrap around at some point. To solve the wrap-around problem,
we include an additional “era bit” along with the sequence number. The era bit toggles
between 0 and 1 each time the sequence number wraps around. If two numbers belong to
different eras, an “era correction” is performed before comparing them. Era correction
involves subtracting a constant N/2 from both the sequence numbers where N is the
sequence number range. This era correction works correctly as long as the two sequence
numbers belonging to different eras are not more than N/2 apart from each other.

Handling consecutive packet losses. The sender switch maintains a lookup
table reTxReqs which is updated by the receiver and read by the sender to decide
which packets to retransmit. When consecutive packets are lost, multiple entries in
reTxRegs need to be updated simultaneously by the loss notification packet. If reTxReqs

is implemented as a single register, such a simultaneous update is not possible due to

LinkGuardian

98
100 40G:8R (1% Loss) swbes @ 2ol
_ 99.9999[1 e 88 (0 Loee) . 8T
£ somspintrion o [
8 99.9997 25G'SR:(5% Loss) _E'?:‘:'
99.9996 SRR SORRIRES U SRR SRR :
99.9995 i FALERE ' ' '
1 2 3 4 5 6 7

Consecutive Packets Lost (1518B)

Figure 5.7: Distribution of consecutive packets lost.

hardware limitations. We had to implement reTxReqs across multiple 1-bit registers
(details omitted for brevity) where the number of registers required is equal to the
maximum number of consecutive packets lost. This number needs to be decided at
compile time. In Figure 5.7, we plot the distribution of the number of consecutive
packets lost that we measured by setting the VOA to induce unreasonably high loss
rates of 1% and 5%. Based on Figure 5.7, our current implementation provisions for
handling 5 consecutive packets lost using 5 1-bit registers.

To update the ackNo at the receiver when there is an ACK timeout (see §5.3.3), we
follow the methodology of TimerTasks [100] where periodic packets from the switch’s
packet generator are used for timekeeping. In our implementation, we set the rate of
these timer packets to 10 Mpps (~1% of switch’s pipeline processing capacity).

Packet Generation. To create multiple copies of a buffered packet during retrans-
mission (in case of a high loss rate), the sender switch uses the multicast primitive.
Upon detecting a loss, the receiver switch uses ingress mirroring to generate the loss
notifications. Whenever PFC pause/resume packets need to be sent by the receiver, we
modify the timer packets and send them to the sender switch.

Non-blocking Mode. Our prototype implementation allows us to disable Link-
Guardian’s functionality of preserving the packet ordering i.e. any packet lost due to

corruption is simply retransmitted out-of-order. We call this mode of LinkGuardian’s

5.3 LinkGuardian 99

operation the non-blocking mode or LinkGuardianNB in short. LinkGuardianNB is
suitable for scenarios where a small amount of per-flow reordering does not significantly

impact application performance.

5.3.6 Repairing Corrupting Links in Practice

Recall that LinkGuardian is activated on a link only when the link is found to be cor-
rupting packets (§5.3). However, if we only enable LinkGuardian and do nothing to
repair the corrupting links, then over a long period of time (~1-2 years) nearly every
link in a large datacenter network would be corrupting packets and would need to be
protected by LinkGuardian. This will inflict significant overhead on all the switches as
they would need to run LinkGuardian simultaneously on all the ports. Therefore, the
strategy would be to deploy LinkGuardian together with CorrOpt [192]. The combined
solution will function as follows. When a link is detected to be corrupting packets, we
will first enable LinkGuardian on the link to immediately reduce the effective loss rate
to an acceptable rate. Then we will run CorrOpt’s fast checker algorithm to check if
the link can be safely disabled and scheduled for maintenance without violating the net-
work’s capacity constraints. If the link can be safely disabled, then it would be disabled
and scheduled for maintenance. However, if the link cannot be safely disabled, then it
will continue operate with LinkGuardian enabled to ensure that there is little impact
on application performance. After maintenance, whenever a link is enabled, we will run
CorrOpt’s optimizer algorithm to see if any of the corrupting links running LinkGuardian
can be safely disabled and scheduled for repair.

By operating in this manner, both LinkGuardian and CorrOpt complement each
other — LinkGuardian reduces the impact on application performance when CorrOpt fails
to disable the links due to capacity constraints. This also allows CorrOpt to run at higher
capacity constraints as the inability to disable corrupting links (due to high capacity

constraint) no more results into high network-wide corruption losses. On the other

100 LinkGuardian

hand, CorrOpt helps to figure out which of the links currently running LinkGuardian
could be disabled safely and scheduled for repair. Note that vanilla CorrOpt disables the
corrupting links to put an immediate stop to the corruption losses. On the other hand,
the combined solution of LinkGuardian and CorrOpt disables LinkGuardian-enabled

links for maintenance purposes.

5.4 Evaluation

In this section, we present our evaluation results for LinkGuardian and LinkGuardianNB

(out-of-order recovery). In particular, we seek to answer the following questions:

1. How effective is LinkGuardian at masking the corruption packet losses? Are we able
to reduce the effective loss rate to the operator-specified target as desired? And what
is the corresponding reduction in link speed?

2. How well does LinkGuardian handle tail packet loss and improve FCTs for short and
single-packet flows?

3. How does LinkGuardian’s performance compare with Wharf [72], the state-of-art
link-local FEC solution?

4. How much buffering does LinkGuardian need and what are the associated overheads
and costs of deploying LinkGuardian?

5. When deployed in a large-scale network, how effective is LinkGuardian in reducing
the corruption packet loss and improving the overall network capacity?

Testbed Setup. We used the testbed setup shown in Figure 5.8, where sw2 and sw6
are connected by an optical fiber link that uses the OM4 grade fiber. Depending on the
experiment, all switch-to-switch and host-to-switch links are either 25G or 100G. sw2
and sw6 act as the LinkGuardian sender and receiver respectively and we restrict their
recirculation buffers to 200 KB. The link-under-test is the link between sw2 and sw6.

Unless otherwise stated, the loss is always introduced on the link-under-test using the

5.4 Evaluation 101

\

‘ Breakout

Cassette

Figure 5.9: Variable Optical Attenuator (VOA) setup used in the motivation and
evaluation experiments.

VOA (Figure 5.9), and loss rates are specified considering standard MTU sized packets.
Following the methodology of RAIL [193], for 100GBASE-SR4 links, the VOA attenu-
ation is applied to 1 of the 4 lanes using a breakout cassette. We set LinkGuardian’s
target loss rate? to 10® and the number of packet copies to be retransmitted is then
determined by Equation 5.1 depending on the actual loss rate. We use line-rate packet
generator traffic from sw2 to measure LinkGuardian’s effective link speed. Using the
switch control plane, we poll the port counters for ports denoted by A, B, C and D
in Figure 5.8. These counters enable us to measure the sending rate/throughput of an
endpoint sender, the actual loss rate incurred due to the VOA, and the effective loss rate

achieved by LinkGuardian. We also poll the queue occupancies on sw2 and sw6 using

2For MTU-sized packets, a loss rate of 10" corresponds to a bit error rate (BER) of 107!? which is
considered a healthy /non-corrupting link [193].

102 LinkGuardian

1 — SERPR TR R s SIUTESTRTIRRRTES
0.8 o
5 06 B SR SR | SR SRR P
O 04 254 (loss <= 10 :
0.% ““““ I I25G (L]_()-4 c loss <= 19-3) sereee I
2 25 3 35 4 45 5 55 6
ReTx Delay (us)
(a) 25G link speed

1 ‘.‘?...‘.‘.‘..:. cemeeese e i
0.8 o dt SRR L AR
5 06 o et e e SRR P

O 04 : 100G (loss <= 10™%)

02 : _- . :,1|00G ('10-4 § loss |<= 1Q'3) eeee I

2 25 3 35 4 45 5 55 6
ReTx Delay (us)

(b) 100G link speed

Figure 5.10: Delay observed by LinkGuardian receiver switch to receive retransmission
from the time the loss was detected.

the local control plane.

The servers are equipped with Intel Xeon Silver/Gold CPUs, 128 GB memory, NVIDIA
CX6-DX NICs (25G/100G) and run Linux kernel 5.4.0-91-lowlatency on Ubuntu 20.04.3.
For our experiments, we use kernel-based DCTCP and NIC-based RoCEv2 (RDMA)
transports. For TCP, TSO, SACK, RACK-TLP and ECN (100 KB marking thresh-
old [53]) are enabled and RT' O,y is set to 1 ms. The network RTT for a TCP sender
is ~30 us. For RoCEv2, we use a one-sided RDMA_WRITE operation using NIC-based
reliable delivery (RC [145]) which we found to have a RT'O of ~1ms.

5.4 Evaluation 103

5.4.1 Parameter Tuning

LinkGuardian has three tunable parameters: ackNoTimeout, resumeThreshold, and
pauseThreshold. In this section, we describe how we derive the appropriate values for
these parameters from system parameters.

Recall that ackNoTimeout prevents LinkGuardian from stalling in the event that
a lost packet cannot be recovered (see §5.3.3). Therefore, ackNoTimeout needs to be
set to a value larger than the expected maximum retransmission delay. To estimate the
retransmission delay, we measured the time from when the receiver switch detects packet
loss to when it successfully receives the retransmission from the sender switch. Since
high-priority queues are used for loss notification and retransmission, this retransmission
delay is a function of the switch pipeline latencies, the link speed, and the number of
retransmitted copies. If more than one copy is retransmitted, only the last copy of the
retransmitted packet will be received thereby increasing the retransmission delay in the
worst case.

In Figure 5.10, we plot the distribution of the retransmission delays for ~1 million loss
recoveries for standard-MTU-sized (1,518 B) packets. If the ackNoTimeout is set too close
to the maximum retransmission delay, it can fire off prematurely and increment the ackNo
before a retransmission is received. Hence, we conservatively set the ackNoTimeout to
7.5 us and 7 us for 25G and 100G, respectively. A larger ackNoTimeout leads to a slightly
longer stall in transmission, but only in the unlikely event that the original packet and
all the retransmitted copies are lost due to corruption.

The other parameters are resumeThreshold and pauseThreshold, which are used
by the PFC-based backpressure mechanism (see §5.3.3.1). In particular, when the
recirculation buffer in the sender reaches pauseThreshold, the sender will send the
PFC pause frame; and when the buffer falls below resumeThreshold, it will send the

PFC resume frame. Since we use a fixed hysteresis of 2 MTU, the pauseThreshold is

104 LinkGuardian

05T 006 Resume 4— I

0'23 25G Resume = «f = -+

1 1.2 1.4 1.6 1.8 2
PFC tfiight_resume Delays (ps)

Figure 5.11: tf1ight resune delay observed by receiver switch.

resumeThreshold + 2 MTU.

If resumeThreshold is set too small, the receiver recirculation buffer will be empty
before the sender switch successfully resumes transmissions. Hence, we set resumeThreshold
to a value that is larger than the amount of data that would drain from the buffer during
the time from when the receiver sends a PFC resume frame to when the receiver starts
receiving traffic again. We refer to this time as tf1ignt resune- Tflight resune is indepen-
dent of the corruption loss rate and depends only on the link speed and switch pipeline
latencies.

In Figure 5.11, we plot the observed tfiight resume for 256G and 100G links. In our
implementation, we set resumeThreshold at 40 KB and 37 KB for 25G and 100G links
respectively. These values correspond3 t0 tflight resune Values of 1.9 us and 1.6 us, re-

spectively.

5.4.2 Effective Loss Rate & Link Speed

Using the packet generator on sw2 (see Figure 5.8), we conduct a “stress test” by sending
MTU-sized packets at line rate and evaluate LinkGuardian using three representative
loss rates observed in production (see Figure 5.2): 1075, 104, and 103. As prescribed
by Equation 5.1, LinkGuardian retransmits 1, 1, and 2 copies for each lost packet for

these loss rates, respectively. This should theoretically result in loss rates of 10719,

3the recirculation-based buffer drains at 100G

5.4 Evaluation 105

LinkGuardianNB = ©=- LinkGuardian —@—

1077
108
109

Rate
=
e

o

o

Effective Link Effective Loss
=
o

S
©
(O]
(O]
(% 1 N RET] " 'Y M) 1 T T N
107 104 1073 10 104 1073
Actual Loss Rate Actual Loss Rate

Figure 5.12: Effective loss rates achieved by LinkGuardian and the corresponding
effective link speeds.

108, and 107, respectively. In Figure 5.12, we plot the observed (effective) loss rates
achieved by LinkGuardian and the corresponding effective link speeds for 25GBASE-SR
and 100GBASE-SR4 links. We observe that, except for the 25G link with 103 loss rate,
the effective loss rates for both LinkGuardian and LinkGuardianNB closely match the
theoretically expected loss rates. For the 25G link at the 107 loss rate, our investigations
showed that the corruption losses are not independent and identically distributed (i.i.d.)
and we suspect that this is the reason why the effective loss rate deviates from the
theoretically expected loss rate of 10. However, it is still very close to the target loss
rate of 108,

For effective link speed, we see that LinkGuardianNB scales much better to higher
link speeds and higher loss rates compared to LinkGuardian while achieving similar
effective loss rates. This is because, unlike LinkGuardian, LinkGuardianNB does not
preserve packet ordering and therefore does not incur intermittent pauses in the link
transmission. Nevertheless, for a 100G link with a high loss rate of 103, LinkGuardian
can reduce the loss rate by up to 6 orders of magnitude while incurring only an 8%

reduction in the link’s effective link speed while preserving packet ordering.

106 LinkGuardian

5.4.3 Impact on Transport Protocols

Our high-level goal is to mask the corruption packet losses from the transport layer.
While we showed in §5.4.2 that LinkGuardian can reduce the effective loss rates, what
matters is the net impact on transport protocols. To understand the impact of Link-
Guardian, we send single flow TCP traffic from h4 to h8 using iperf with all links set
to 25G. We evaluate three different TCP variants, CUBIC, DCTCP, and BBR, as they
use congestion loss, ECN, and delay as congestion signals respectively. We also consider
BBR to be representative of delay-based transport protocols, since the implementations
for TIMELY [131] and Swift [115] were not readily available. In each experiment, we
start the setup with no corruption loss. At the 2 second mark, we introduce a loss
rate of 10 on the link, and approximately 5 seconds later, we enable LinkGuardian.
In Figures 5.13a, 5.13b, and 5.13c, we plot the results for CUBIC, DCTCP and BBR
respectively. The effective link speed in these figures is measured separately by sending
a line rate UDP flow under the same experiment conditions.

CUBIC & DCTCP. In Figures 5.13a and 5.13b, we see that at 103 corruption loss,
the throughputs for both CUBIC and DCTCP are reduced sharply once corruption losses
are introduced. Upon enabling LinkGuardian, the corruption loses are nearly eliminated
and the throughput returns to a level comparable to that before packet corruption was
introduced. We also notice that there is a build-up in the flow’s buffer at the sender
switch (shown as “qdepth”).

BBR. Since BBR is mostly agnostic to packet loss, we see in Figure 5.13c that
it suffers minimal degradation when corruption loss in introduced*. Nevertheless, it
seems that once LinkGuardian is enabled, we still see a small increase in the observed
throughput.

Overall, we can see from Figures 5.13a, 5.13b, and 5.13¢ that LinkGuardian’s back-

“We only ran BBR on a 10G link instead of a 25G link because BBR became CPU-limited when we
tried to run the experiment on a 25G link, and it was not able to fully saturate the link.

5.4 Evaluation 107

2o e e | effective link speed (24.6Gbps)
m I - ——
8245 \
2 24 Corruption (10
> -, Corrup ’°",() ' LinkGuardian
§ g O . starts! : starts!

5l : sendrate ——

4 1 | 1 | '/ 1 | 1
o 800 v gdepth ——
< s00l LinkGuardian Rx buffer ——
& 400
@ 200}
ﬂ 0 | | | |
X 60r End-to-End ReTx
oy 38 C ! ! ! I i {

0 2 4 6 8 10 12 14
Time (seconds)
(a) CUBIC on a 25G link with 103 loss.

25 - - e e e e | effective link speed (24.6Gbps)
—~ I— —
0245
o
8 24 M‘\ Corruption (10'3)
= starts! .-=*" LinkGuardian
% Z N starts!
o 5 sendrate

4 I 1 | | I I

I
qdepth ———
150 LinkGuardian Rx buffer
100 F—————- DCTCP ECN Threshold (100KB) ——,

End-to-End ReTx

| 1 1 1 | | |
0 2 4 6 8 10 12 14
Time (seconds)

(b) DCTCP on a 25G link with 103 loss.

#.Pkts Buffer (KB)
(9]
o
T

woa
[clole)
T

o 10 =~ . T = — 1 1 T T T
_8' \eﬁective link rate (9.83Gbps)
S Corruption (1073) LinkGuardian
ot starts! starts!
& sendrate
0 I f f f . I .
o 150 | qdepth ———
< 100 LinkGuardian Rx buffer
= L
(0]
5 5ot
[}
2128 F I i { ’
X 80 : End-to-End ReTx
:ﬁ; 48 L 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14

Time (seconds)

(c) BBR on a 10G link with 10~ loss.

Figure 5.13: Performance of LinkGuardian for CUBIC, DCTCP, and BBR Transport
Protocols.

108 LinkGuardian

Eeodbooos Booo= '— — — effective link speed (24.6Gbps}
%

Corruption (10"
starts!

LinkGuardian

'/ starts!
|
I

sendlrate

#.Pkts Buffer (KB) Rate (Gbps)
N
(9]
o

gE D AR

0 2 4 6 8 10 12 14
Time (seconds)

Figure 5.14: DCTCP on a 25G link with 103 loss, with PFC-based backpressure
disabled.

pressure mechanism is effective at keeping its receiver-side buffer occupancy (labelled as
“rx buffer”) low.

Backpressure Not Considered Optional. In Figure 5.14, we plot the results
for the same experiment repeated with DCTCP, but with the PFC-based backpressure
mechanism disabled. We now see a large number of end-to-end retransmissions because
the recirculation buffer at the receiver periodically builds up and overflows. In fact,
the end-to-end packet losses observed by DCTCP after enabling LinkGuardian are so
severe that the random corruption packet losses in the period between 2 and 8 seconds
are barely visible in Figure 5.14. The throughput is also lower compared to the earlier
results shown in Figure 5.13b. In other words, the PFC-based backpressure mechanism

is critical for ensuring that buffering at the receiver switch works as intended.

5.4.4 Tail Packet Loss and Short Flows

One-packet Flows. To evaluate how effectively LinkGuardian handles tail packet
losses, we measure the FCT of 143 B DCTCP and RDMA_WR flows in our testbed with
all links set to 100G while introducing a corruption loss rate of ~1073. 143 B is the most

frequent flow size in the Google all RPC workload [166]. It is clear from our results in

5.4 Evaluation 109

Lpoe e S1IX - -
0.998 e At SRR RAE OO -
S 0994 CTCP + LinkGuardian (1073 loss) .

' DATCP + LinkGuardianNB (103 loss) -
0.992 | DCTCP (1073 loss) - -+ -
0.99 T e e

10 100 1000 10000
Message/Flow Completion Time (us)
(a) DCTCP.
1 i ———— ’ 66X>‘]|, """"""""""""
0.998 ““_"',‘_‘;‘_";‘—“;‘—“;';‘;‘—"H‘—“;‘ """""""""""""""
S 0994 /' RDMA_WR + LinkGuardian (103 loss)
' _FQDMA WR + LinkGuardianNB (1073 loss)
0.992 17 RDMA_WR (10 3 loss) - -
0.99 et .
10 100 1000 10000

Message/Flow Completion Time (us)

(b) RDMA WRITE

Figure 5.15: Top 1% FCTs for 143B flows on a 100G link.

Figure 5.15 that both LinkGuardian and LinkGuardianNB are able to mask the corrup-
tion losses so effectively that the performance at 103 loss rate becomes indistinguishable
from the case when the link is lossless. LinkGuardian and LinkGuardianNB achieve the
same performance since we do not need to worry about ordering in case of single packet
flows. We note that the result in Figure 5.15 is also representative of all other flow sizes
for workloads in Figure 5.3 that fit within a single packet.

Longer (multi-packet) Flows. Next, we repeat the experiment with 24,387 B-sized
flows which is the most frequent flow size in the DCTCP web search workload [8]. We
plot the results when using DCTCP, BBR and RDMA_WRITE transports in Figure 5.16.
We can see that the lines for LinkGuardian and no loss mostly overlap. While BBR is
mostly agnostic to packet loss, this experiment shows that corruption packet loss does
affect the FCTs of short BBR flows and therefore mitigating corruption loss is necessary

for BBR and similar rate-based/loss-agnostic transport protocols. In Figure 5.16, we

110

LinkGuardian

CDF

CDF

CDF

oy e e e m .
0.99 g AR DCTCP (NO loss) ——
0.98 DCTCH + LinkGuardian (1073 loss)

0.97 v DCTCP +H LinkGuardianNB (103 loss) = =
0.96 - DCTCP (1073 loss) - -
0.95 el
10 100 1000 10000
Message/Flow Completion Time (us)
(a) DCTCP

1 """"""""""""""" ‘-':-:-_ ‘_“'_“_“'_':‘_“'_' " -
0.99 [T BBR (No loss) —
0.98 BBH + LinkGuardian (1073 loss)

0.97 BBR H LinkGuardianNB (103 loss) = =
0.96 BBR (1073 loss) - -
0.95 el
10 100 1000 10000
Message/Flow Completion Time (us)
(b) BBR
1 e T R
0 o8 pr RDMA_WR (No loss) —
: RDMA WR + LinkGuardian (103 loss)
0.97 e ! / RDMA_WR + LinkGuardianNB (10°3 loss) = =
0.96 L RDMA_WR (1073 loss) - -
0.95 Ll]
10 100 1000

Message/Flow Completion Time (us)
(c) RDMA WRITE

Figure 5.16: Top 5% FCTs for 24,387B flows (17 pkts) on a 100G link.

5.4 Evaluation 111

also see that for RDMA, LinkGuardianNB provides no improvement over the loss case
other than preventing RTO by handling tail packet losses. This is because RDMA’s NIC-
based reliable delivery has no reordering tolerance and LinkGuardianNB does not cause
any reordering when it recovers the tail packet loss. On the other hand, for DCTCP and
BBR, LinkGuardianNB performs nearly as well as LinkGuardian except at very high
percentiles (> 99.9'") where it performs marginally worse.

Why does LinkGuardianNB perform so well? For single-packet flows, it is
unsurprising that the transport layer performance is the same for both LinkGuardian
and LinkGuardianNB. For longer flows, we found that since TSO is enabled, packet
bursts travel at near line rate (100G) and LinkGuardianNB is not able to perform out-
of-order recovery within TCP’s reordering window of 3 packets. However, since the
flows are short, this does not significantly affect the FCT for two reasons: (i) corruption
often happens among the last 3 packets for short flows where there is no reduction in
cwnd as the TCP sender does not receive sufficient SACKed bytes (>= 3 MSS) while
LinkGuardianNB performs a sub-RTT but out-of-order recovery; and (ii) in cases when
there is cwnd reduction, since the flows are short, it does not significantly affect the FCT.
For BBR, there is no reduction in sending rate since BBR is loss-agnostic. However, BBR
still benefits from LinkGuardianNB by avoiding 1 RTT delay as well as TCP end-host
stack latencies involved in end-to-end recovery.

In summary, both LinkGuardian and LinkGuardianNB improve the 99.9'" percentile
FCT for single packet DCTCP and RDMA flows by 51x and 66x respectively. For longer
flows, the 99.9*" percentile gains for LinkGuardian are 19x for DCTCP and BBR, and
39x for RDMA. While LinkGuardianNB performs similar to LinkGuardian for longer
TCP flows (up to 99" percentile), it provides little benefit in case of reordering-sensitive

RDMA but does eliminate the long tail FCTs due to RTOs.

112 LinkGuardian

5.4.5 Contribution of different mechanisms

To understand the contributions of the different mechanisms implemented by Link-
Guardian, we repeat the above experiment (24,387 B) with a variant of LinkGuardian
implementing only link-local retransmission (ReTx) and then selectively enable Link-
Guardian’s packet order preserving (Order) and tail loss handling (Loss) mechanisms.
In Table 5.1, we show the top 1% FCT results for DCTCP. Simple link-local retrans-
mission improves the 99.9% FCT significantly as it recovers the loss of the 3rd last and
the 2nd last packets in the flow which would otherwise cause an RTO due to lack of
3MSS SACKed bytes. Additionally handling packet ordering only provides marginal
gains up to 99.9%. Tail loss handling on the other hand significantly reduces FCT at
all top percentiles. Notice that the two right-most columns represent LinkGuardianNB
and LinkGuardian respectively, and the additional packet order preserving by Link-
Guardian improves the FCT by ~33% at 99.99% and above percentiles thereby nearly
matching the performance of the no loss case. Results for BBR and RDMA (omitted for
brevity) show similar trends except that for RDMA at 99.9%, ReTx+Order shows 3.75x
improvement than ReTx since RDMA is more reordering intolerant compared to TCP.
One may erroneously conclude that tail loss handling only helps for FCTs at 99.99% and
above. However, our results in Figure 5.15 show that tail loss handling in crucial for
single-packet flows.

We note here that these performance deficits exist even though RACK-TLP is en-
abled in our experiments. While the exact reason is under investigation, we believe that
this because for very short flows RACK-TLP does not have a reliable estimate of the

network RTT.

5.4 Evaluation 113

Table 5.1: Top 1% FCT (us) for 24,387B DCTCP flows for different LinkGuardian
mechanisms: tail loss handling (“Tail”) and preserving packet order (“Order”)

No Loss ReT ReTx ReTx ReTx+Tail
Loss (1073) * +Order +Tail +Order

99.00% | 152.293 169.044 | 161.959 161.168 156.627 155.669
99.90% | 166.877 3399.743 | 212.378 193.252 195.588 168.21
99.99% | 197.536 4036.167 | 3606.115 3773.866 314.128 194.085
99.999% | 253.207 4159.96 | 4107.404 4088.288 356.503 235.793
std dev | 21.3 172.294 | 63.695 80.148 22.629 22.286

5.4.6 Overhead

In this section, we evaluate the overheads of deploying LinkGuardian. In particular, we
consider 4 aspects: (i) buffer usage, (ii) protocol overhead, (iii) recirculation overhead;
and (iv) dataplane resources consumed. We will show that the overheads are so low that
LinkGuardian is immediately and easily deployable on modern switches. In this section,
we present the overhead results corresponding to the “stress test” experiments in §5.4.2
where we run continuous line-rate traffic. These results, therefore, show the “worst case”
cost of running LinkGuardian as real-world link utilization exceeds 90% only about 10%
of the time [188].

Packet Buffer Usage. LinkGuardian requires packet buffer at the sender switch
(TX buffer) and additionally at the receiver switch (RX buffer) when packet ordering is
to be preserved. We used control plane APIs to measure the packet buffer usage which
we plot in Figure 5.17 for 25G and 100G links running at three different loss rates.
The key takeaway from these results is that at 25G, the TX and RX buffer usage for
LinkGuardian are at most 3.6 KB (~2MTU) and 60 KB respectively for all evaluated loss
rates; at 100G, the TX and RX buffer usage are both at most 90 KB. LinkGuardianNB
requires no RX buffer, while its TX buffer requirement is same as LinkGuardian at 25G
and about 3x lower (24.4KB) at 100G. This is because LinkGuardianNB has no PFC-

based backpressure mechanism that could potentially delay the ACKs. To put these

114

LinkGuardian

@ 100
v
; 80
N 60
D40
£ 20
o 0
1073 104 1073
Loss Rate
(a) 25G link speed.
100 TX Buffer O RX Buffer O TX Buffer (NB)

Buffer Size (KB)
N
o

Loss Rate
(b) 100G link speed.

Figure 5.17: LinkGuardian’s packet buffer usage for different link speeds and packet
loss rates. Whiskers show min, max, 25", 50t 75" percentiles.

Table 5.2: Recirculation overhead (% pipe forwarding capacity)

Loss Rate —» 107° 10~* 1073
25G TX 0.45 0.449 0.444
25G RX 0.661 0.662 0.664
100G TX 0.663 0.657 0.608
100G RX 0.657 0.658 0.662

numbers in context, 100G datacenter switches have 16-42 MB of packet buffer [178].

In other words, the required buffering to deploy LinkGuardian is negligible for modern

switches.

Protocol Overhead. LinkGuardian adds a 3-byte header to each packet. A similar

3-byte ACK header is added to packets in the reverse direction when the ACK informa-

tion needs to be piggybacked. Since standard MTU-sized frame are 1,538 octets on wire,

this overhead amounts to a ~0.2% degradation of link capacity. Note that this overhead

is incurred only when LinkGuardian is activated on a link after packet corruption is

detected. Both the dummy packets and explicit ACK packets do not add any overheads

5.4 Evaluation 115

on the link since they use strictly lower priority queues and thus are transmitted only
when there is no regular traffic.

Recirculation Overhead. In Table 5.2, we show the recirculation overhead at both
the sender and the receiver switches in terms of the percentage of the switch pipeline’s
processing capacity. LinkGuardianNB has the same recirculation overhead on the sender
switch but zero on the receiver switch. The key takeaway is that recirculation takes
up less than 1% of the switch pipeline’s processing capacity, and thus the overhead is
negligible for modern switches.

Dataplane Resources. LinkGuardian needs to maintain state in the dataplane on
a per-port basis and uses stateful ALUs (SALUs) for stateful operations. In our current
implementation, LinkGuardian requires only ~9% of the total SRAM memory and uses
~25% of the available SALUs. While 25% might seem high, we note that stateful ALUs
are typically not used by other switch forwarding or routing functions as those perform
stateless operations. Also, we believe that future switches are likely to incorporate more
SALUs, while LinkGuardian will be able to support higher link speeds without the need
for more SALUs.

5.4.7 Comparison with Wharf

Link-local FEC is a natural alternative to link-local retransmissions. To this end, we
want to know how LinkGuardian performs compared to Wharf [72], which to the best
of our knowledge, is the state-of-the-art link-local FEC to mitigate corruption packet
losses. We were not able to reproduce Wharf’s results experimentally because we did
not have access to the required FPGA hardware. In Table 5.3, we reproduce Wharf’s
results numerically by picking the Wharf FEC parameters that gave their best reported
goodput for each loss rate (c.f. Figure 8 in [72]). In our experiments, we used the
same experimental setup as Giesen et al.: 10G link, TCP CUBIC, Tofino-based random

packet dropping, and 4 different loss rates. Our results show that both LinkGuardian

116 LinkGuardian

Table 5.3: TCP CUBIC goodput (Gb/s) on a 10G Link

Loss Rate — 0 1075 107% 107% 102
None 90.49 9.48 8.01 3.48 1.46
Wharf n/a 9.13 9.13 9.13 791

LinkGuardian 947 9.47 947 9.46 9.2
LinkGuardianNB 9.47 947 947 9.46 9.2

and LinkGuardianNB compare favorably at all loss rates. In case of LinkGuardianNB,
we observed that it was able to do out-of-order retransmission within TCP’s reordering
window for majority of times and thereby prevented the TCP sender from reducing its

cwnd below the network BDP.

5.4.8 Effectiveness in large-scale deployment

In this section, we present the results from the simulation of a large datacenter network
that runs the combined LinkGuardian + CorrOpt solution (§5.3.6). We use the same
methodology that was used to evaluate CorrOpt [192] and compare vanilla CorrOpt with
the combined solution of LinkGuardian and CorrOpt.

Simulation Setup. We contacted the authors of CorrOpt [192] for details on their
evaluation setup. However, due to confidentiality reasons, they were unable to provide
us the topology information, the link corruption traces, the simulator and the CorrOpt
algorithm’s implementation originally used in CorrOpt’s evaluation. Therefore, we im-
plemented a link corruption trace generator, an event-driven simulator, the CorrOpt
algorithm, and the combined solution of LinkGuardian and CorrOpt in about 2800 lines
of Python code. For topology, we use the state-of-the-art Facebook fabric [12] datacenter
network with about 100K switch-to-switch optical links and 1:1 oversubscription ratio®.
All switch-to-switch links are 100G and while running LinkGuardian their effective link
capacity is as per Figure 5.12. For the repair time, we use the data from CorrOpt which

suggests that 80% of the links are repaired in about 2 days while the remaining links

Ssupports about 500K 10G-connected or 125K 40G-connected servers

5.4 Evaluation 117

take about 4 days. Our link corruption trace generator uses the corruption loss rate
and link spatial location distribution data from Microsoft’s datacenters [192]. For the
interarrival times of the corruption events, we use a per-link Weibull distribution with a
mean-time-to-failure (MTTF) of 10K hours. The MTTF value of 10K hours is based on
the reliability study of fiber links at Facebook by Meza et al. [128] (more trace generation
details in Appendix A.3).

Evaluation Metrics. We use the same metrics as used by Zhuo et al. [192] to
evaluate CorrOpt: (i) Total penalty: sum of the loss rates for all the active corrupting
links in the network. (ii) Least paths per ToR: the fraction of paths to the spine (top)
layer of the network for the worst-case top-of-rack (ToR) switch. This metric essentially
captures the impact on per-ToR path diversity as corrupting links are disabled. However,
since enabling LinkGuardian does not disable a link, this metric does not capture the
cost of LinkGuardian which is the reduction of a link’s effective capacity. To capture
the same, we introduce an additional metric — (iii) Least capacity per pod: the total
capacity of a network pod from the ToR-layer to the spine (top) layer for the worst-case
pod in the network.

Recall from §5.3.6 that both the solutions disable the links subject to the network
capacity constraints. The network capacity constraint is specified as the minimum frac-
tion of paths that every ToR switch must have to the highest stage (spine layer) of the
network. Figures 5.18 and 5.19 show a 1-month snapshot of the simulation result ob-
tained using a 1-year long link corruption trace when the capacity constraint was 50%
and 75% respectively. We see that the combined solution of LinkGuardian and CorrOpt
reduces the total penalty by about 6 and 4 orders of magnitude for capacity constraints
of 50% and 75%, respectively. We also see that with a capacity constraint of 75% (Fig-
ure 5.19), it is not possible to disable all the corrupting links at nearly all times. This
is because in the Facebook fabric topology, the links between ToR and fabric switches

are critical and disabling a single such link leads to the ToR switch losing 25% of its

118 LinkGuardian

CorrOpt =——— LinkGuardian + CorrOpt = = =

Total Penalty

Least Paths
per ToR (%)

Least Capacity
per Pod (%)

200 205 210 215 220 225 230
Time (days)

Figure 5.18: Simulation results for Facebook fabric topology (100K optical links) when
the capacity constraint is 50%.

paths to the spine layer. The resulting high total penalty by CorrOpt at all times means
that a network operator cannot possibly run the network at 75% capacity constraint
without inflicting significant corruption packet loss on application traffic. However, with
the combined LinkGuardian + CorrOpt solution, the network can be operated at 75%
capacity constraint while still maintaining orders of magnitude lower total penalty.

Notice that the least paths per ToR for both the solutions go hand-in-hand since links
are disabled in both the solutions using CorrOpt’s algorithm. The arrow in Figure 5.18
points to the instance where the combined solution’s least capacity per pod was lower
than that of vanilla CorrOpt by 0.05%. This shows the small additional cost imposed
by LinkGuardian in the form of reduction in the link’s effective capacity that leads to
reduction in the pod’s capacity.

Further, to study the benefits and costs of the combined solution over the entire
simulation period, in Figure 5.20 we show the CDFs of (a) the ratio of the total penalty

of vanilla CorrOpt to that of the combined solution; and (b) the decrease in least capacity

5.4 Evaluation 119

CorrOpt =——— LinkGuardian + CorrOpt = = =

Total Penalty
=
o
N
-

]
o
T

Least Paths
per ToR (%)

(2]
o

Vo]
0o

(e}
()}

Least Capacity
per Pod (%)

(]
Ny

200 205 210 215 220 225 230
Time (days)

Figure 5.19: Simulation results for Facebook fabric topology (100K optical links) when
the capacity constraint is 75%.

per pod by the combined solution compared to vanilla CorrOpt. In Figure 5.20a, we
see that when the capacity constraint is 50%, for about 35% of the time, there is no
difference in the penalty ratio as all corrupting links are disabled successfully. However,
for the remaining 65% of the time and for nearly all times with 75% capacity constraint,
the combined solution offers significant benefits while causing very little reduction in the
pod’s capacity to the core (Figure 5.20Db).

Overall, compared to deploying vanilla CorrOpt, the combined solution of Link-
Guardian + CorrOpt helps to keep the total penalty low when corrupting links cannot
be disabled due to high capacity constraints. This also means that a network operator
can now run the network at a higher capacity constraint which would have not been pos-
sible before. The additional cost imposed by the combined solution in terms of reduction

in network capacity is also very low.

120 LinkGuardian

1 """""" W
1 : : : : 7 === : :
i ; : : : : 098 Fu-7 SEREES SRR
0.8 : : g : LI L
, 0.96 p
50.6 80.947 “““ SR S ------
(@] 0.4 092 i S 50%
0.9 Fri i g50, mmam
0.2 088 1 1 754) 1]
0 0 0.05 0.1 0.15 0.2 0.25
0 1 2 3 4 5 6
107 107 10 10% 107 10° 10 Decrease in Least Capacity
Total Penalty Ratio per Pod (normalized %)
(a) (b)

Figure 5.20: For the entire simulation period of 1 year, the CDF of (a) The ratio of
total penalty of vanilla CorrOpt to that of LinkGuardian + CorrOpt; and (b) Decrease
in least capacity per pod of LinkGuardian 4+ CorrOpt compared to vanilla CorrOpt.

5.5 Discussion and Future work

In this section, we discuss a few corner cases, address the current implementation con-
straints with next generation programmable hardware and discuss future extensions.

Implementing LinkGuardian with Tofino2. In Figure 5.10, we see that Link-
Guardian takes up to 5.25us to recover an MTU-sized (1,538 B on wire) packet on a
100G link. Given that it takes only about ~123ns to serialize 1,538 bytes on a 100G
link, this delay is surprisingly long. It turns out that this large delay is an artifact of
our current implementation on the Intel Tofino.

Since we employ recirculation to buffer copies of recently sent packets, we cannot
immediately retransmit a buffered packet as soon as a loss notification is received. In
the worst case, a packet could have to cycle through the entire recirculation loop before
it can be retransmitted. The same applies on the receiver switch. Recirculating basically
imposes an additional and somewhat random delay.

With Tofino2, we could potentially avoid both these hardware limitations and im-
plement LinkGuardian more efficiently. Tofino2 [117] offers new advanced flow control

primitives that could be used to pause/unpause as well as achieve credit-based schedul-

5.5 Discussion and Future work 121

ing of a queue entirely in the dataplane. These primitives could in theory allow us to
implement retransmission without recirculation, but this thesis remains to be validated.

Bi-directional corruption. Currently, in our prototype, we used LinkGuardian
to protect application performance from unidirectional link corruption. This suffices for
most situations since 91.8% of the corrupting links have been found to be unidirectional
in practice [192]. However, supporting bi-directional corruption is mostly a matter of
instantiating LinkGuardian parallelly in the reverse direction. Omne small additional
change that would be required is to increase the reliability of the control messages from
the receiver switch (loss notifications, explicit ACK packets, and the PFC pause/resume)
by sending multiple copies of them.

Handling multiple corrupting links on the same switch. An earlier study by
Zhuo et al. reported that corrupting links exhibit weak spatial correlation i.e. corrupting
links tend not to be on the same switch or topologically close [192]. Therefore, our
implementation currently assumes that we only have one corrupting link per switch
pipeline. A basic question that remains unanswered is the following: how can we use
the recirculation port to buffer packets that come from different corrupting links? Since
Tofino2 can likely implement retransmission without recirculation, Tofino2 can naturally
support multiple corrupting links.

LinkGuardian and LinkGuardianNB. Our results in Figure 5.16 and Table 5.3
suggest that LinkGuardianNB could be deployed for protecting TCP flows while a com-
plete LinkGuardian system would be required for protecting RDMA flows. Depending
on the application mix and the desired level of ordering guarantees, a network operator
could do a runtime configuration to run either LinkGuardian or LinkGuardianNB. In
fact, while currently not implemented in our prototype, it is reasonably straightforward
to allow both LinkGuardian and LinkGuardianNB to run simultaneously on a corrupting
link, each protecting a different class of traffic with different ordering guarantees.

Incremental Deployment. LinkGuardian is suitable for incremental deployment

122 LinkGuardian

as switches are upgraded over time in a network. The links that are shared between
LinkGuardian-enabled switches can then be protected by LinkGuardian if they happen
to start corrupting packets. Network operators can prioritize deploying LinkGuardian
at parts of the network topology where the capacity constraints are stringent or where
disabling the corrupting link could impact several paths in the network. That said, a
system like CorrOpt [192] would still be required as the link would need to be eventually
disabled for cleaning or repair. If deployed strategically, LinkGuardian would comple-
ment CorrOpt as it would help bring down the loss rate on the links that CorrOpt is
not able to disable (due to capacity constraints) as well as make it easier for CorrOpt
to solve the optimization problem more efficiently.

Scalability. LinkGuardian is agnostic to the overall scale of the network as it works
locally on the link between adjacent switches. The question is whether LinkGuardian
would continue to work well when link speeds continue to grow ever larger. In principle,
LinkGuardian would still work for higher link speeds of 400G and above. It might
achieve a proportionally lower effective link speed and higher buffer overhead if the
switch pipeline latency hugely dominates the retransmission delay. Based on our results
in Figure 5.12, we expect LinkGuardianNB to scale better compared to LinkGuardian.
However, we believe that with a Tofino2-based implementation and further dataplane
optimizations, LinkGuardian should still achieve good performance with low overheads.
We plan to investigate this once the hardware becomes available.

Reordering tolerance in modern transport protocols. Recently, RFC8985 [42]
has introduced a new feature called the “reordering window adaptation” in the Linux
TCP stack. Also, RoCEv2’s NIC-based reliable transport has a new “selective repeat”
feature [146] that allows more efficient selective retransmission than Go-back-N recovery.

We plan to investigate the implication of these new features for LinkGuardianNB.

5.6 Summary 123

5.6 Summary

In this chapter, we present LinkGuardian which uses link-local retransmission to mitigate
corruption packet loss in datacenter networks. While the basic idea is straightforward,
to the best of our knowledge, we are the first to validate that a combination of simple
techniques can make link-local retransmission practical in modern datacenter networks.
LinkGuardian is able to recover from tail packet losses efficiently at sub-RTT timescales,
and is, therefore, able to keep FCTs low and avoid timeouts. With a configurable target
loss rate, LinkGuardian will allow network operators to work with corrupting links with
moderate loss rates (between 1072 and 10°) like healthy links at a marginally reduced
link speed with little overhead. We also propose a combined solution of LinkGuardian
with CorrOpt that is able to reduce the effective loss rate throughout the network when
corrupting links cannot be disabled due to capacity constraints. It also allows network
operators to run the network at much higher capacity constraints as the impact of the
failed-to-disable corrupting links is now significantly reduced by LinkGuardian. Overall,
we believe that we have made a strong case that link-local retransmission is both practical

and effective for modern datacenter networks.

Chapter

Conclusion and Future Directions

With the increasing push of businesses and services to the cloud, modern datacenter
networks continue to grow both in their scale and complexity. At the same time, emer-
gence of new low-latency interactive applications such as AR/VR are making the SLA
requirements from datacenter networks even more stringent. Therefore, handling net-
work link failures as well as unexpected congestion events is crucial to ensuring that
datacenter networks are able to consistently meet such stringent SLAs. In this thesis,
we propose novel in-network techniques that mitigate the impact of network link fail-
ures on application performance and also provide high-resolution monitoring to tackle
unexpected congestion events.

In this chapter, we first discuss the future directions including recommendations
for future programmable hardware, as well as scalability and adoption issues for the
proposed solutions. We then conclude the chapter and this thesis by summarizing our

contributions in the broad context of datacenter networking and cloud infrastructure.

126 Conclusion and Future Directions

6.1 Future Directions

6.1.1 Temporal packet buffering beyond handling link failures

The key design aspect of both SQR and LinkGuardian is the temporal buffering of packet
copies of recently sent packets. Temporal buffering of packet copies is a useful building
block which can be used in applications beyond handling link failures. For example, it
could be used to protect certain highly critical packets against congestion packet loss.
A switch transmitting out a highly critical packet would make its copy and buffer the
same. If the next-hop switch transmits the packet successfully, it would inform the
previous switch that this packet was transmitted successfully and the previous switch
can then drop the buffered copy of the packet. In case the next-hop switch drops the
critical packet, it would inform the previous switch that the packet was dropped due to
congestion, and the previous switch would then retransmit the critical packet. Repeating
this scheme between every consecutive pair of switches, highly critical packets could be

protected against congestion loss in addition to link failures.

6.1.2 Better dataplane primitives for temporal packet buffering

In this thesis, we achieved the required temporal buffering for SQR and LinkGuardian
through the recirculation primitive action available in today’s dataplane programmable
switches. Recirculation, however, incurs unnecessary overhead in terms of the pipeline
processing capacity and adds latency in addition to causing reordering of packets. Order-
ing the packets back again costs additional recirculation which again adds more latency.
Newer generation programmable switches such as Tofino2 provide primitives such as
Advanced Flow Control (AFC) that allow pausing and resuming egress port queues in
the dataplane [117]. We studied AFC in details and found out that using AFC can help

to prevent reordering of the temporally buffered packets. However, it cannot completely

6.1 Future Directions 127

eliminate the need for recirculation. The crux of the issue here is that the packet buffer
memory is only available for use in the form of egress port queues. This means that
when we buffer the packets, we should already know their potential next-hop destina-
tion, which may not always be the case (e.g. the LinkGuardian receiver switch). Further,
to perform any meaningful operations on the buffered packets, these packets need to en-
ter the egress pipeline and if for some reason, they were to be buffered again or sent
out on another egress port, we need to recirculate them. Overall, what this means is
that, despite of new dataplane primitives such as AFC, there is still a need for better
dataplane primitives to support temporal packet buffering.

Based on our experience, we recommend two primitives, that if made available, could
make temporal packet buffering more efficient and eliminate the need for recirculation.
First, a primitive that allows to specify an identifier, a timeout and a timeout action for
a cloned (mirrored) copy of a recently sent packet. The timeout action could either be
drop or transmit to a specific egress port queue. Second, another primitive that allows
to specify an identifier, and an immediate action for an already buffered packet. The al-
lowed immediate actions are the same as the timeout actions. For pipelined architecture
switches, the execution for these two primitives would have to be mainly done by the
buffering and queuing engine (BQE) of a switch dataplane and the specification of the
different parameters would have to be done through the forwarding pipeline’s metadata.
The implementation feasibility of these two primitives for pipelined architecture switches
remains a matter of further investigation. However, we believe that these two primitives
are definitely feasible to achieve on non-pipelined programmable switch platforms such

as Juniper’s Trio [183].

6.1.3 Fast and Efficient Monitoring of Link Failures

In this thesis, we propose SQR and LinkGuardian to mitigate the impact of link failures

on application performance. Both SQR and LinkGuardian provide mitigation after the

128 Conclusion and Future Directions

link failure has been detected. For detecting fail-stop link failures, SQR relies on existing
methods [122, 133]. The drawback with the existing methods is that they are slow (10’s
of us to 100’s of ms) in terms of the time they take to detect link failures. Additionally,
for detecting gray link failures, a sizeable amount of application traffic needs to suffer
corruption packet drops before the link can be designated as having a gray failure with
a certain corruption loss rate. Several existing works make an assumption that fail-stop
link failures could be detected on the orders of microseconds using network transceiver
features such as Tx/Rx Squelch [167] together with hardware support from the switch
dataplane. However, to the best of our knowledge, the Tx/Rx Squelch [167] feature of
transceivers has not been validated and there exists no study reporting its fidelity in
practice. Similarly, for detecting gray link failures, there does not exist a solution that
minimizes the impact on application traffic. Therefore, there is certainly a scope to
conduct an in-depth study of existing link failure detection techniques — both fail-stop
and gray — and subsequently develop a more efficient solution that minimizes the penalty

to the application traffic.

6.1.4 Scaling to future link speeds

Within the next decade, we expect the Ethernet link speeds of 400G and 800G (collo-
quially known as “Terabit Ethernet”) to become common place in datacenter networks.
An important question therefore is — whether the proposed in-network techniques in this
thesis would scale to these future link speeds.

BurstRadar should have no problem scaling to higher link speeds. This is because
when link speeds become higher, the dataplane pipelines also become proportionally
faster. Also, as has been the case so far, the support for egress mirroring (required
by BurstRadar for courier packets) also scales with port speeds. For similar reasons,
SQR’s main technique should also have no problem scaling to higher link speeds. The

main challenge that SQR will face in scaling to higher link speeds is in keeping its

6.1 Future Directions 129

overheads low. If future generation switches support the new primitives mentioned in
Section 6.1.2, then that would help immensely in reducing the recirculation overhead
and the accompanying latency. However, larger link speeds would also mean higher
packet buffer requirement for SQR. While faster and efficient fail-stop failure detection
techniques (Section 6.1.3) would certainly reduce the buffer requirement, we do not
expect the reduction to be significant. This means that SQR may not be practical for
switches with high-link speeds and shallow buffers. However, it is likely that SQR will
still remain practical if implemented on switches such as the Juniper Trio [183] that
offer a large extended packet buffer (on the order of a few GBs). Such extended packet
buffers are typically implemented using memory technologies such DRAM which have a
higher latency. However, since fail-stop link failures and the subsequent retransmission
by SQR is a one-off event, higher latency to access the extended packet buffer is not a
big concern for SQR.

In case of LinkGuardian, scaling to higher link speeds poses challenges both in terms
of performance as well as overheads. From Figure 5.12, we see that, for the same loss
rate, as the link speed becomes higher, the degradation in LinkGuardian’s effective link
capacity becomes larger. This is because, for higher link speeds, the pipeline latencies of
the sender and receiver LinkGuardian switches start to dominate the total retransmission
delay. Since LinkGuardian performs in-order retransmission by default, each time there
is a corruption packet loss, the transmission on the link needs to halt for the retransmis-
sion delay amount of time. As a result, we do not expect LinkGuardian’s effective link
capacity to scale very well with higher link speeds when the corruption loss rates are
high (>=10%). However, for majority of times, real-world corruption loss rates are less
than 1073 (see Figure 5.2). Furthermore, the new primitives mentioned in Section 6.1.2
would certainly help lower the degradation in effective link capacity of LinkGuardian
by reducing the retransmission delay. Also, based on the results in Figure 5.12, we

can expect LinkGuardian’s non-blocking mode (LinkGuardianNB) to fare well at higher

130 Conclusion and Future Directions

link speeds since it does not stall the transmission on the link. While in Figure 5.16¢,
we see that LinkGuardianNB does not work well with RDMA, we expect this issue to
be resolved in the near future with later generation of RDMA NICs [144]. As for the
performance of TCP with LinkGuardianNB at higher percentiles (>99.9"), we believe
that there is scope for performance improvements in the end-host TCP stack. Over-
all, for LinkGuardian at future link speeds, we believe that LinkGuardianNB will be a
more practical solution when performance improvements are also made at the end-point

transport stacks.

6.1.5 Adoption in practice

We believe that the research presented in this thesis is translational and can be adopted
for practical deployments. Both BurstRadar and SQR run on a singleton switch requiring
no coordination with any other switches. Therefore, these two systems are the easiest
to adopt for practical deployments. A system called DTEL [110] from Intel (previously
Barefoot Networks) implements nearly the same snapshot algorithm as BurstRadar!.
DTEL currently ships as a part of Intel’s reference switch.p4 implementation. Unlike
BurstRadar, deployment of SQR, however, is contingent on already existing support on
the switch for link failure detection and backup path selection. Deploying SQR would
therefore need more work as SQR would need to be integrated with the existing failure
detection and backup path selection mechanisms on the switch.

LinkGuardian implements a protocol between a pair of switches and is therefore not
so straightforward to deploy compared to BurstRadar or SQR. As discussed in Sec-
tion 6.1.4, the non-blocking version of LinkGuardian (LinkGuardianNB) is expected
to scale better for future link speeds. LinkGuardianNB is also much simpler in its
design and implementation. If the end-point transport’s performance issues when work-

ing with LinkGuardianNB are addressed in the future (Section 6.1.4), we can expect

"We do not claim that DTEL was inspired by BurstRadar. To the best of our knowledge, DTEL and
BurstRadar were developed independently.

6.2 Summary of Thesis Contributions 131

Decreasing A
Priority
Performance

/ Stranding \
/ Velocity \
/ Manageability \
/ Availability \

Figure 6.1: Priority order for infrastructure work at Google Cloud [172]

LinkGuardianNB to have a lower resistance for adoption. Our P4 implementation for
LinkGuardianNB defines the different messages types used in the protocol between the
adjacent switches. With sufficient traction, LinkGuardianNB protocol could be for-
malized into an Internet RFC along with the P4-specified packet header formats. For
compatibility check, the protocol could include an additional handshake step where the
control plane of a switch would check for LinkGuardianNB support with its adjacent
switches. If supported, the adjacent pair of switches would setup the necessary initial

state before activating the protocol in the dataplane.

6.2 Summary of Thesis Contributions

Since the advent of datacenter networks, there has been a significant amount of work
focusing on performance [6, 8, 9, 10, 17, 76, 83, 87, 149, 173, 180] and manageabil-
ity [75, 141]. Figure 6.1 shows the priority order for infrastructure work at Google

Cloud [172]. We see that availability forms the highest priority for large cloud operators

132 Conclusion and Future Directions

without which none of the other aspects of a datacenter network can be guaranteed. In
datacenter infrastructure, there has been a long standing-tradition of building reliable
systems on top of cheaper and unreliable components in order to achieve a good cost
vs. reliability tradeoff. Examples include building large-scale storage systems on top
of inexpensive commodity disks [71]. Constant monitoring, error detection, and auto-
matic recovery are integral to such systems. In the same spirit, this thesis contributes
in-network techniques that provide monitoring, error detection and automatic recovery
for transient congestion and hardware failure events occurring at individual links in a
datacenter network. Essentially, by masking datacenter network link faults from appli-
cations’ reliability metrics such as the tail FCTs, the proposed in-network techniques
enable datacenter network operators to better handle the cost vs. reliability trade-off.
As link speeds keep increasing and the availability and performance demands of
applications also increase, network management problems (including failures) would be
required to be solved in real time [59]. Essentially, datacenter networks should become
self-driving/self-patching networks [58, 59] where network faults patch by themselves
allowing the network to run seamlessly with minimal impact on the reliability (SLAs).

This thesis therefore represents a contribution towards this vision.

Appendices

Appendix

LinkGuardian

A.1 Protocol Details

In this Appendix, we provide some details that might be helpful for understanding our
implementation of LinkGuardian, but which are not essential for understanding the key

ideas and contributions of our work.

A.1.1 Loss Detection & Notification

In Figure A.1, we list the state variables maintained by the sender and receiver switches
and the different packets that are exchanged. The sender maintains a monotonically

increasing segNo while the receiver records the latest received seqNo as latestRxSeqgNo.

Sender Switch Receiver Switch
seqNo piggybacked normal pkts > latestRxSeqNo
|—> pendingAck
latestRxSeqNo ACK pkts t [PktGen]
reTxReqs - Loss Notification pkts }Loss Detection|

Figure A.1: State maintained by LinkGuardian switches and different types of packets
that read/update it.

136 LinkGuardian

A copy of the latestRxSeqgNo is also maintained at the sender, which the receiver keeps
updating. The sender also maintains a lookup table called reTxReqs, which records the
sequence numbers of the packets for which retransmission is requested.

For each packet that is transmitted on the corrupting link (protected packet), the
sender adds the seqNo to the packet (using a custom header) and increments it by
1. The sender uses egress mirroring to also make a copy of the packet along with the
added sequence number and buffers it until the receiver notifies that the packet was
received successfully. On the receiver, when a protected packet is received, it updates
the latestRxSegNo to the segNo in the packet and also sets the pendingAck to 1.
pendingAck set to 1 denotes that the copy of latestRxSeqgNo on the sender is yet to be
updated.

No Loss Scenario. When there are no corruption packet losses, the latestRxSeqNo
on the receiver would increase by 1, each time a protected packet is received. On
every update of the latestRxSeqNo, the receiver must update the latestRxSeqNo on
the sender as soon as possible so that the sender can drop the buffered packets that
are successfully delivered. This timely update of the latestRxSeqNo on the sender is
critical to ensure that LinkGuardian’s use of the packet buffer at the sender is kept to a
minimum.

Loss Scenario. When a protected packet(s) gets corrupted and dropped by the
receiving MAC, the receiver observes that the latestRxSeqNo is incremented by more
than 1. On noticing this, the receiver activates a LossDetection() routine. In this
routine, the receiver generates a new packet called “Loss Notification” which contains
information about the missing sequence number as well as the latestRxSeqNo. This loss
notification packet is sent to the sender through a high-priority queue (see Figure 5.5) to
ensure timely recovery. On reaching the sender, the lookup table reTxReqs (Figure A.1)

is updated with the sequence numbers of the packets that need to be retransmitted.

A.1 Protocol Details 137

Figure A.2: Sender-side buffering and Retransmission.

A.1.2 Sender-side Buffering & Retransmission

For each packet that is sent on the corrupting link, the sender switch adds a mono-
tonically increasing seqNo and uses egress mirroring to create a copy of the packet for
buffering. The packet buffering on the sender switch is realized through recirculation.
Specifically, the buffered copy of the protected packet is sent to the recirculation port
of the switch dataplane pipeline. At the same time, as described in §A.1.1, the re-
ceiver switch keeps the latestRxSegNo on the sender switch updated and additionally
updates the lookup table reTxReqs in case of a corruption packet loss. Each time the
buffered packet completes a recirculation loop, the sender switch applies the logic shown
in Figure A.2 to the packet’s sequence number. Essentially, if the buffered packet’s se-
quence number is less than or equal to the latestRxSeqNo, the sender switch checks the
reTxReqs lookup table to see if a retransmission is requested for that sequence number.
If so, the packet is retransmitted through a high-priority queue (see Figure 5.5) or the
packet is dropped otherwise. If a packet is retransmitted, its sequence number is cleared
in the reTxReqgs table. If the buffered packet’s sequence number is greater than the
latestRxSeqNo, then we do not know yet if the packet was successfully received or not

and therefore the sender switch continues to buffer the packet through recirculation.

138 LinkGuardian

A.2 DMonitoring Links for Corruption

To detect corrupting links, we implemented corruptd, a daemon which runs at the local
control plane of the programmable switches.

Detecting Corrupting Links. corruptd periodically polls the driver (in this
chapter, we configure the interval as 1 second) to extract the switch port RX statistics,
specifically, framesrxok and framesrxall. We maintain a moving window of 100M
frames to compute the link loss rates, given by L = % When L > 1078
for any particular link, the upstream transmitting switch will be notified to activate
LinkGuardian.

Notification and Activation. For scalability, corruptd daemons communicate
through a publish-subscribe (PubSub) pattern using Redis. Each daemon subscribes
to link corruption notifications relating to the local switch’s links. Upon receipt of a
notification, corruptd pushes corresponding data plane match-action table entries to

activate LinkGuardian for the corrupting link depending on the target and the actual

loss rates (see Equation 5.1).

A.3 Link Corruption Trace Generation

A link corruption trace is essentially a time series of link corruption events where a link
corruption event denotes which link started to corrupt packets and at what loss rate. To
determine the time at which a link would start corrupting packets, we assume a per-link
1-parameter Weibull distribution with a constant shape parameter (/3). This is because
the location parameter of the Weibull distribution () is zero since it is not guaranteed
that all links in a large warehouse-scale datacenter would not start corrupting packets
during a certain initial period. Also, the shape parameter (53) is equal to 1, since the

corruption is purely caused by random external events such a connector contamination,

A.3 Link Corruption Trace Generation 139

fiber bending, etc. Therefore, the per-link Weibull PDF that determines the time until

a link’s next failure is given by
1 (t
) == x e () (A1)

where the parameter 7 is the mean-time-to-failure (MTTF) of a link. A study by Meza
et al. [128] showed that for fibers links from different vendors considered in their study,
the mean time between the link faults was at most 10,000 hours. We conservatively use
the value of 10,000 hours as the MTTF (7 in Equation A.1) since Meza et al. did not
specifically consider only intra-datacenter links. What this means is that on average, it
would take 10,000 hours (or 1.15years) for a fiber link to start corrupting packets from
the time it was last repaired.

To generate the trace, we first draw samples from the Weibull distribution indepen-
dently for each link to determine the times at which each link would start corrupting
packets. This gives us the various times of the corruption events and the link involved in
each corruption event. Then for each corruption event, we use the corruption loss rate
distribution from CorrOpt (c.f. Table 1 in [192]) to determine the loss rate. This list
of corruption events sorted by time forms the link corruption trace. We note that the
trace generated using the above methodology has a nearly random spatial distribution
of simultaneously corrupting links which matches the observation by Zhuo et al. [192] in

production datacenters.

Bibliography

1]

3GPP. 2007. TS 36.321: E-UTRA; Medium Access Protocol Specification (Release
8). (2007).

3GPP. 2020. TS 36.321: LTE; E-UTRA; Medium Access Protocol Specification
(Release 16). (2020).

Jung Ho Ahn, Nathan Binkert, Al Davis, Moray McLaren, and Robert S Schreiber.
2009. HyperX: topology, routing, and packaging of efficient large-scale networks.
In Proceedings of SC.

Akamai. 2017. Akamai Online Retail Performance Report. (2017). Retrieved
2022-04-06 from https://www.akamai.com/newsroom/press-release/akamai-
releases-spring-2017-state-of-online-retail-performance-report
Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A scalable,
commodity data center network architecture. In Procedings of SIGCOMM.
Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A Scalable,
Commodity Data Center Network Architecture. In Proceedings of SIGCOMM.
Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Francis Matus, Rong Pan, Navindra
Yadav, George Varghese, et al. 2014. CONGA: Distributed Congestion-aware
Load Balancing for Datacenters. In Proceedings of SIGCOMM.

https://www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-state-of-online-retail-performance-report
https://www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-state-of-online-retail-performance-report

142

BIBLIOGRAPHY

8]

[10]

[11]

[12]

[13]

[14]

[17]

Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.
Data Center TCP (DCTCP). In Proceedings of SIGCOMM.

Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vah-
dat, and Masato Yasuda. 2012. Less Is More: Trading a Little Bandwidth for
Ultra-Low Latency in the Data Center. In Proceedings of NSDI.

Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,
Balaji Prabhakar, and Scott Shenker. 2013. pfabric: Minimal near-optimal data-
center transport. In Proceedings of SIGCOMM.

Mark Allman, Vern Paxson, and Ethan Blanton. 2009. TCP Congestion Control.
RFC 5681 (2009).

Alexey Andreyev. [n. d.]. Introducing data center fabric, the next-generation Face-
book data center network. ([n. d.]). https://bit.1ly/3uvNlcQ.

Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer Rexford,
David Walker, and David Wentzlaff. 2020. Enabling Programmable Transport
Protocols in High-SpeedNICs. In Proceedings of NSDI.

Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu, Hongqiang Harry Liu, Jitu
Padhye, Boon Thau Loo, and Geoff Outhred. 2018. 007: Democratically finding
the cause of packet drops. In Proceedings of NSDI.

InfiniBand Trade Association et al. 2014. RoCEv2 Architecture Specification.
(2014).

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
2012. Workload analysis of a large-scale key-value store. In Proceedings of SIG-
METRICS.

Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang. 2015.
Information-Agnostic Flow Scheduling for Commodity Data Centers. In Proceed-

ings of NSDIL

https://bit.ly/3uvNlcQ

BIBLIOGRAPHY 143

[18]

[20]

[21]

[22]

[23]

[24]

[26]

[27]

Hari Balakrishnan, Venkata N. Padmanabhan, Srinivasan Seshan, and Randy H.
Katz. 1996. A Comparison of Mechanisms for Improving TCP Performance over
Wireless Links. In Proceedings of SIGCOMM.

Hari Balakrishnan, Srinivasan Seshan, Elan Amir, and Randy H. Katz. 1995. Im-
proving TCP/IP Performance over Wireless Networks. In Proceedings of MOBI-
COM.

Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ranganathan.
2017. Attack of the Killer Microseconds. 60, 4 (2017).

Luiz André Barroso, Urs Hoélzle, and Parthasarathy Ranganathan. 2018. The
Datacenter as a Computer: Designing Warehouse-Scale Machines, Third Edition.
Vol. 13. Morgan & Claypool Publishers.

Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni Antichi,
Minian Yu, and Michael Mitzenmacher. 2020. PINT: Probabilistic in-band network
telemetry. In Proceedings of SIGCOMM.

Theophilus Benson, Aditya Akella, and David A Maltz. 2010. Network traffic
characteristics of data centers in the wild. In Proceedings of IMC.

Ethan Blanton, Mark Allman, Lili Wang, Ilpo Jarvinen, Markku Kojo, and Yoshi-
fumi Nishida. 2012. A conservative loss recovery algorithm based on selective
acknowledgment (SACK) for TCP. RFC 6675 (2012).

David Borman, B Braden, Van Jacobson, and R Scheffenegger. 2014. Protection
Against Wrapped Sequences. IETF RFC 7323. (2014). https://tools.ietf.
org/html/rfc7323#section->5.

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rex-
ford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al. 2014.
P4: Programming protocol-independent packet processors. SIGCOMM CCR 44,
3 (2014), 87-95.

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Mar-

https://tools.ietf.org/html/rfc7323#section-5
https://tools.ietf.org/html/rfc7323#section-5

144

BIBLIOGRAPHY

[38]

[39]

tin Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding Metamor-
phosis: Fast Programmable Match-Action Processing in Hardware for SDN. In
Proceedings of SIGCOMM.

Broadcom. 2010. Trident+ Buffer Size. (2010). https://goo.gl/9LUHWa
Broadcom. 2013. Trident IT Buffer Size. (2013). https://goo.gl/3eWY7T
Broadcom. 2016. StrataDNX Qumran-AX Ethernet Switch Series. (2016). https:
//bit.1y/2K1GYYR

Broadcom. 2016. Tomahawk+ Buffer Size. (2016). https://goo.gl/3eWYTT
Broadcom. 2017. Tomahawk IT Buffer Size. (2017). https://goo.gl/3eWYTT
Broadcom. 2018. Trident 3 Ethernet Switch Series. (2018). https://bit.ly/
2HBgKut

Jake Brutlag. [n. d.]. Speed Matters. ([n. d.]). http://ai.googleblog.com/2009/
06/speed-matters.html

Carmelo Cascone, Davide Sanvito, Luca Pollini, Antonio Capone, and Brunilde
Sanso. 2017. Fast failure detection and recovery in SDN with stateful data plane.
International Journal of Network Management 27, 2 (2017), e1957.

Cavium. 2018. XPliant Ethernet Switch Product Family. (2018). https://goo.
gl/xzfLLo

Guo Chen, Yuanwei Lu, Yuan Meng, Bojie Li, Kun Tan, Dan Pei, Peng Cheng,
Layong Luo, Yonggiang Xiong, Xiaoliang Wang, et al. 2016. Fast and Cautious:
Leveraging Multi-path Diversity for Transport Loss Recovery in Data Centers. In
Proceddings of ATC.

Guo Chen, Yuanwei Lu, Yuan Meng, Bojie Li, Kun Tan, Dan Pei, Peng Cheng,
Layong Larry Luo, Yongqgiang Xiong, Xiaoliang Wang, et al. 2016. Fast and cau-
tious: Leveraging multi-path diversity for transport loss recovery in data centers.
In Proceedings of NSDI.

Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, and Ori Rot-

https://goo.gl/9LUHWa
https://goo.gl/3eWY7T
https://bit.ly/2K1GYYR
https://bit.ly/2K1GYYR
https://goo.gl/3eWY7T
https://goo.gl/3eWY7T
https://bit.ly/2HBgKut
https://bit.ly/2HBgKut
http://ai.googleblog.com/2009/06/speed-matters.html
http://ai.googleblog.com/2009/06/speed-matters.html
https://goo.gl/xzfLLo
https://goo.gl/xzfLLo

BIBLIOGRAPHY 145

[40]

[41]

[42]

[49]

[50]

[51]

tenstreich. 2018. Catching the Microburst Culprits with Snappy. In Proceedings of
the Afternoon Workshop on Self-Driving Networks.

Yanpei Chen, Rean Griffith, Junda Liu, Randy H Katz, and Anthony D Joseph.
2009. Understanding TCP incast throughput collapse in datacenter networks. In
Proceedings of WREN.

Peng Cheng, Fengyuan Ren, Ran Shu, and Chuang Lin. 2014. Catch the Whole Lot
in an Action: Rapid Precise Packet Loss Notification in Data Center. In Procedings
of NSDI.

Yuchung Cheng, Neal Cardwell, Nandita Dukkipati, and Priyaranjan Jha. 2021.
The RACK-TLP Loss Detection Algorithm for TCP. RFC 8985 (2021).

Inho Cho, Keon Jang, and Dongsu Han. 2017. Credit-Scheduled Delay-Bounded
Congestion Control for Datacenters. In Proceedings of SIGCOMM.

Jerry Chu, Nandita Dukkipati, Yuchung Cheng, and Matt Mathis. 2013. Increasing
TCP’s Initial Window. IETF RFC 6928. (2013). https://tools.ietf.org/html/
rfc6928.

Cisco. 2017. Monitor Microbursts on Cisco Nexus 5600 Platform and Cisco Nexus
6000 Series Switches. (2017). https://goo.gl/5Xxhpm

Cisco. 2019. Configuring QoS - Catalyst 3850. (2019). https://bit.1ly/2W6j0To
Benoit Claise. 2004. Cisco Systems Netflow Services Export version 9. RFC 3954
(2004). https://tools.ietf.org/html/rfc3954

P4 Language Consortium. 2018. Baseline switch.p4. (2018). https://github.
com/p4lang/switch

P4 Language Consortium. 2018. Portable Switch Architecture. (2018). https:
//p4.org/pi-spec/docs/PSA.html

James R. Dabrowski and Ethan V. Munson. 2001. Is 100 Milliseconds Too Fast?.
In Proceedings of CHIL

Jeffrey Dean and Luiz André Barroso. [n. d.]. The Tail at Scale. 56, 2 ([n. d.]).

https://tools.ietf.org/html/rfc6928
https://tools.ietf.org/html/rfc6928
https://goo.gl/5Xxhpm
https://bit.ly/2W6jOTo
https://tools.ietf.org/html/rfc3954
https://github.com/p4lang/switch
https://github.com/p4lang/switch
https://p4.org/p4-spec/docs/PSA.html
https://p4.org/p4-spec/docs/PSA.html

146

BIBLIOGRAPHY

[52]

[53]

[54]

[61]

[62]

[63]

Henri Maxime Demoulin, Joshua Fried, Isaac Pedisich, Marios Kogias, Boon Thau
Loo, Linh Thi Xuan Phan, and Irene Zhang. 2021. When idling is ideal: Optimizing
tail-latency for heavy-tailed datacenter workloads with perséphone. In Proceedings
of SOSP.

Linux Networking Documentation. 2022. DCTCP (DataCenter TCP). (2022).
https://www.kernel.org/doc/html/latest/networking/dctcp.html.

Nandita Dukkipati and Nick McKeown. 2006. Why Flow-Completion Time Is the
Right Metric for Congestion Control. ACM SIGCOMM Computer Communication
Review 36, 1 (2006).

EdgeCore Networks. 2016. AS5900-54X Spec. (2016). https://bit.1ly/2VQ1iRZb
EdgeCore Networks. 2018. AS5812-54X Spec. (2018). https://goo.gl/ZKqF6F
EdgeCore Networks. 2019. AS5816-64X Spec. (2019). https://www.edge-core.
com/productsInfo.php?cls=1&cls2=5&cls3=166&1d=309

Nick Feamster, Arpit Gupta, Jennifer Rexford, and Walter Willinger. 2019. NSF
workshop on measurements for self-driving networks. In Proceedings of Workshop
on Measurements for Self-Driving Networks.

Nick Feamster and Jennifer Rexford. 2017. Why (and how) networks should run
themselves. arXiv preprint arXiv:1710.11583 (2017).

Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. 2018. Azure Accelerated Networking: SmartNICs in the Public
Cloud. In Proceedings of NSDI.

Edward John Forrest Jr. 2014. How to Precision Clean All Fiber Optic Connec-
tions: A Step By Step Guide. (2014).

Marco Foschiano. 2008. Cisco Systems UniDirectional Link Detection (UDLD)
Protocol. IETF RFC 5171. (2008). https://tools.ietf.org/html/rfc5171.

The Linux Foundation. 2018. DPDK. (2018). http://dpdk.org/

https://www.kernel.org/doc/html/latest/networking/dctcp.html
https://bit.ly/2VQ1RZb
https://goo.gl/ZKqF6F
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=166&id=309
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=166&id=309
https://tools.ietf.org/html/rfc5171
http://dpdk.org/

BIBLIOGRAPHY 147

[64]

[65]

[66]

[67]

[70]

73]

fs.com. [n. d.]. 10GBASE-SR SFP+ optical transceiver. ([n. d.]). https://bit.
1y/3CRIMTK.

fs.com. [n. d.]. 50GBASE-SR SFP56 optical transceiver. ([n. d.]). https://bit.
ly/3Pb8wuo.

fs.com. [n. d.]. Edge-Core ET7302-SR compatible 25GBASE-SR optical
transceiver. ([n. d.]). https://bit.ly/3cR3jca.

fs.com. 2022. QSFP28-SR4-100G Reliability MTBF Test Report. (2022).
Retrieved 2022-03-26 from https://img-en.fs.com/file/report/qsfp28-sri-
100g-reliability-mtbf-test-report.pdf

Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han,
Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. 2016. Network Require-
ments for Resource Disaggregation. In Proceedings of OSDI.

Peter X. Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia Rat-
nasamy, and Scott Shenker. 2015. pHost: Distributed near-Optimal Datacenter
Transport over Commodity Network Fabric. In Proceedings of CoONEXT.

Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi, Pengcheng Zhang, Wenwen
Peng, Bo Li, Yaohui Wu, Shaozong Liu, Lei Yan, et al. 2021. When Cloud Storage
Meets RDMA. In Proceedings of NSDI.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google file
system. In Proceedings of SOSP.

Hans Giesen, Lei Shi, John Sonchack, Anirudh Chelluri, Nishanth Prabhu, Nik
Sultana, Latha Kant, Anthony J McAuley, Alexander Poylisher, André DeHon,
et al. 2018. In-network computing to the rescue of faulty links. In Proceedings of
the NetCompute Workshop.

Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Understanding
network failures in data centers: measurement, analysis, and implications. In Pro-

ceedings of SIGCOMM.

https://bit.ly/3CRJMTK
https://bit.ly/3CRJMTK
https://bit.ly/3Pb8wuo
https://bit.ly/3Pb8wuo
https://bit.ly/3cR3jca
https://img-en.fs.com/file/report/qsfp28-sr4-100g-reliability-mtbf-test-report.pdf
https://img-en.fs.com/file/report/qsfp28-sr4-100g-reliability-mtbf-test-report.pdf

148

BIBLIOGRAPHY

[74]

[79]

[81]

[82]

Prateesh Goyal, Preey Shah, Kevin Zhao, Georgios Nikolaidis, Mohammad Al-
izadeh, and Thomas E. Anderson. 2022. Backpressure Flow Control. In Proceedings
of NSDI.

Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupta. 2009. VL2: A Scalable and Flexible Data Center Network. In Proceed-
ings of SIGCOMM.

Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert N. M. Watson,
Andrew W. Moore, Steven Hand, and Jon Crowcroft. 2015. Queues Don’t Matter
When You Can JUMP Them!. In Proceedings of SIGCOMM.

P4.org Applications Working Group. 2018. In-band Network Telemetry (INT)
Dataplane Specification v1.0. (2018). https://goo.gl/HtPE9K

QSFP-DD MSA Group. 2022. QSFP-DD/QSFP-DD800/QSFP112 Hardware
Specification. (2022). Retrieved 2022-03-24 from http://www.qsfp-dd.com/wp-
content/uploads/2022/03/QSFP-DD-Hardware-Rev6.2.pdf

Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi,
Chen Tian, Yongguang Zhang, and Songwu Lu. 2009. BCube: a High Performance,
Server-centric Network Architecture for Modular Data Centers. In Proceedings of
SIGCOMM.

Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Pad-
hye, and Marina Lipshteyn. 2016. RDMA over commodity ethernet at scale. In
Proceedings of SIGCOMM.

Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, and Songwu
Lu. 2008. DCell: a Scalable and Fault-tolerant Network structure for Data Centers.
In Procedings of SIGCOMM.

Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Mazieres, and

https://goo.gl/HtPE9K
http://www.qsfp-dd.com/wp-content/uploads/2022/03/QSFP-DD-Hardware-Rev6.2.pdf
http://www.qsfp-dd.com/wp-content/uploads/2022/03/QSFP-DD-Hardware-Rev6.2.pdf

BIBLIOGRAPHY 149

[83]

[84]

[86]

[89]

[90]

[91]

Nick McKeown. 2014. T Know What Your Packet Did Last Hop: Using Packet
Histories to Troubleshoot Networks.. In Proceedings of NSDI.

Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W.
Moore, Gianni Antichi, and Marcin Wéjcik. 2017. Re-Architecting Datacenter
Networks and Stacks for Low Latency and High Performance. In Proceedings of
SIGCOMM.

Torsten Hoefler, Duncan Roweth, Keith Underwood, Bob Alverson, Mark Gris-
wold, Vahid Tabatabaee, Mohan Kalkunte, Surendra Anubolu, Siyan Shen, Ab-
dul Kabbani, Moray McLaren, and Steve Scott. 2023. Datacenter Ethernet and
RDMA: Issues at Hyperscale. arXiv preprint arXiv:2302.03337 (2023).

Todd Hoff. [n. d.]. Latency Is Everywhere and It Costs You Sales - How to Crush It.
([n. d.]). http://highscalability.com/latency-everywhere-and-it-costs-
you-sales-how-crush-it

Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki, Alberto Dainotti,
Stefano Vissicchio, and Laurent Vanbever. 2019. Blink: Fast Connectivity Recov-
ery Entirely in the Data Plane. In Proceedings of NSDI.

Chi-Yao Hong, Matthew Caesar, and P. Brighten Godfrey. 2012. Finishing Flows
Quickly with Preemptive Scheduling. In Proceedings of SIGCOMM.

IEEE. 2009. 802.11n-2009 Standard. (2009). https://standards.ieee.org/
ieee/802.11n/3952/.

IEEE. 2013. 802.11ac-2013 Standard. (2013). https://ieeexplore.ieee.org/
document/6687187.

IEEE. 2015. IEEE Standard for Ethernet - Amendment 3: Physical Layer Speci-
fications and Management Parameters for 40 Gb/s and 100 Gb/s Operation over
Fiber Optic Cables. IEEE Std 802.3bm-2015 (Amendment to IEEE Std 802.3-2012
as amended by IEEE Std 802.3bk-2013 and IEEE Std 802.3bj-2014) (2015).
IEEE. 2016. IEEE Standard for Ethernet — Amendment 2: Media Access Control

http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
https://standards.ieee.org/ieee/802.11n/3952/
https://standards.ieee.org/ieee/802.11n/3952/
https://ieeexplore.ieee.org/document/6687187
https://ieeexplore.ieee.org/document/6687187

150

BIBLIOGRAPHY

[92]

[94]

[97]

(98]

Parameters, Physical Layers, and Management Parameters for 25 Gb/s Operation
Amendment 2: Media Access Control Parameters, Physical Layers, and Manage-
ment Parameters for 25 Gb/s Operation. IEEE Std 802.3by-2016 (Amendment to
IEEE Std 802.3-2015 as amended by IEEE Std 802.3bw-2015) (2016).

IEEE. 2017. TIEEE Standard for Ethernet - Amendment 10: Media Access Con-
trol Parameters, Physical Layers, and Management Parameters for 200 Gb/s and
400 Gb/s Operation. IEEE Std 802.3bs-2017 (Amendment to IEEE 802.3-2015
as amended by IEEE’s 802.3bw-2015, 802.3by-2016, 802.3bq-2016, 802.3bp-2016,
802.3br-2016, 802.3bn-2016, 802.3b2-2016, 802.3bu-2016, 802.3bv-2017, and IEEE
802.3-2015/Cor1-2017) (2017).

IEEE. 2019. IEEE Standard for Ethernet - Amendment 3: Media Access Control
Parameters for 50 Gb/s and Physical Layers and Management Parameters for 50
Gb/s, 100 Gb/s, and 200 Gb/s Operation. IEEE Std 802.3cd-2018 (Amendment
to IEEE Std 802.3-2018 as amended by IEEE Std 802.3c¢b-2018 and IEEE Std
802.5bt-2018) (2019).

IEEE. 2020. TEEE Standard for Ethernet — Amendment 7: Physical Layer and
Management Parameters for 400 Gb/s over Multimode Fiber. IEEFE Std 802.3c¢m-
2020 (Amendment to IEEE Std 802.3-2018 as amended by IEEE Std 802.3¢b-2018,
IEEE Std 802.3bt-2018, IEEE Std 802.3cd-2018, IEEE Std 802.3c¢n-2019, IEEE
Std 802.3cg-2019, and IEEE Std 802.3¢q-2020) (2020).

Intel. 2018. FlexPipe. (2018). https://goo.gl/PzPudG

Virajith Jalaparti, Peter Bodik, Srikanth Kandula, Ishai Menache, Mikhail Ry-
balkin, and Chenyu Yan. 2013. Speeding up Distributed Request-Response Work-
flows. In Proceedings of SIGCOMM.

Keon Jang, Justine Sherry, Hitesh Ballani, and Toby Moncaster. 2015. Silo: Pre-
dictable message latency in the cloud. In Proceedings of SIGCOMM.

Vimalkumar Jeyakumar, Mohammad Alizadeh, Yilong Geng, Changhoon Kim,

https://goo.gl/PzPudG

BIBLIOGRAPHY 151

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

and David Mazieres. 2014. Millions of little minions: Using packets for low latency
network programming and visibility. In Proceedings of SIGCOMM.

Raj Joshi, Qi Guo, Nishant Budhdev, Ayush Mishra, Mun Choon Chan, and Ben
Leong. 2022. LinkGuardian: Mitigating the impact of packet corruption loss with
link-local retransmission. In Proceedings of APNet.

Raj Joshi, Ben Leong, and Mun Choon Chan. 2019. Timertasks: Towards
time-driven execution in programmable dataplanes. In Proceedings of SIGCOMM
(Posters and Demos).

Glenn Judd. 2015. Attaining the Promise and Avoiding the Pitfalls of TCP in the
Datacenter. In Proceedings of NSDI.

Juniper Networks. 2016. Network Analytics Overview. (2016). https://goo.gl/
TbNwSC

Zaid Ali Kahn. 2016. Project Falco: Decoupling Switching Hardware and Software.
(2016). https://goo.gl/U7PUQZ

Srikanth Kandula, Dina Katabi, Shantanu Sinha, and Arthur Berger. 2007. Dy-
namic Load Balancing Without Packet Reordering. SIGCOMM CCR 37, 2 (2007),
51-62.

Pravein Govindan Kannan, Nishant Budhdev, Raj Joshi, and Mun Choon Chan.
2021. Debugging Transient Faults in Data Centers using Synchronized Network-
wide Packet Histories. In Proceedings of NSDI.

Pravein Govindan Kannan, Raj Joshi, and Mun Choon Chan. 2019. Precise Time-
synchronization in the Data-Plane using Programmable Switching ASICs. In Pro-
ceedings of SOSR.

Rishi Kapoor, Alex C Snoeren, Geoffrey M Voelker, and George Porter. 2013. Bul-
let trains: a study of NIC burst behavior at microsecond timescales. In Proceedings
of CoNeuxt.

Dina Katabi, Mark Handley, and Charlie Rohrs. 2002. Congestion Control for High

https://goo.gl/TbNwSC
https://goo.gl/TbNwSC
https://goo.gl/U7PUQZ

152

BIBLIOGRAPHY

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

Bandwidth-Delay Product Networks. ACM SIGCOMM Computer Communication
Review 32, 4 (2002).

Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer
Rexford. 2016. Hula: Scalable load balancing using programmable data planes. In
Proceedings of SOSR.

Changhoon Kim and Roberto Mari. 2018. Advanced Dataplane Telemetry.
(2018). = https://opennetworking.org/wp-content/uploads/2018/12/Data-Plane-
Telemetry-ONF-Connect-Public.pdf,.

Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait Dixit,
and Lawrence J Wobker. 2015. In-band network telemetry via programmable
dataplanes. In Proceedings of SIGCOMM (Poster).

Daehyeok Kim, Yibo Zhu, Changhoon Kim, Jeongkeun Lee, and Srinivasan Se-
shan. 2018. Generic External Memory for Switch Data Planes. In Proceedings of
HotNets.

Ron Kohavi and Roger Longbotham. [n. d.]. Online Experiments: Lessons Learned.
40, 9 (|n. d.]). http://ieeexplore.ieee.org/document/4302627/

Ron Kohavi, Roger Longbotham, Dan Sommerfield, and Randal M. Henne. [n. d.].
Controlled Experiments on the Web: Survey and Practical Guide. 18, 1 ([n. d.]).

Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan MG Wassel, Xian
Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld,
Michael Ryan, et al. 2020. Swift: Delay is simple and effective for congestion
control in the datacenter. In Proceedings of SIGCOMM.

Karthik Lakshminarayanan, Matthew Caesar, Murali Rangan, Tom Anderson,
Scott Shenker, and Ton Stoica. 2007. Achieving convergence-free routing using
failure-carrying packets. In Proceedings of SIGCOMM.

Jeongkeun Lee. 2020. Advanced Congestion & Flow Control with Programmable

Switches. In P4 Expert Roundtable Series. https://bit.1ly/3I8x7fw

=
http://ieeexplore.ieee.org/document/4302627/
https://bit.ly/3J8x7fw

BIBLIOGRAPHY 153

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

Jialin Li, Naveen Kr Sharma, Dan RK Ports, and Steven D Gribble. 2014. Tales of
the tail: Hardware, OS, and application-level sources of tail latency. In Proceedings
of SoCC.

Yuliang Li, Rui Miao, Honggiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan Yu. 2019.
HPCC: High Precision Congestion Control. In Proceedings of SIGCOMM.
Hwijoon Lim, Wei Bai, Yibo Zhu, Youngmok Jung, and Dongsu Han. 2021. To-
wards timeout-less transport in commodity datacenter networks. In Proceedings
EuroSys.

Junda Liu, Aurojit Panda, Ankit Singla, Brighten Godfrey, Michael Schapira,
and Scott Shenker. 2013. Ensuring Connectivity via Data Plane Mechanisms. In
Proceedings of NSDI.

Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas E Anderson.
2013. F10: A Fault-Tolerant Engineered Network.. In Procedings of NSDI.
Suksant Sae Lor, Raul Landa, and Miguel Rio. 2010. Packet Re-cycling: Elimi-
nating Packet Losses due to Network Failures. In Proceedings of HotNets.
Markets and Markets. 2021. Cloud Computing Market Forecast. (2021).
Retrieved 2022-03-24 from https://www.marketsandmarkets.com/Market-
Reports/cloud-computing-market-234.html

Richard Martin. 2007. Wall Street’s Quest To Process Data At The Speed Of
Light. Information Week. (2007).

Sarah McClure, Amy Ousterhout, Scott Shenker, and Sylvia Ratnasamy. 2022. Ef-
ficient scheduling policies for {Microsecond-Scale} tasks. In Proceedings of NSDI.
Justin Meza, Tianyin Xu, Kaushik Veeraraghavan, and Onu Mutlu. 2018. A Large
Scale Study of Data Center Network Reliability. In IMC.

Justin Meza, Tianyin Xu, Kaushik Veeraraghavan, and Onur Mutlu. 2018. A Large

https://www.marketsandmarkets.com/Market-Reports/cloud-computing-market-234.html
https://www.marketsandmarkets.com/Market-Reports/cloud-computing-market-234.html

154

BIBLIOGRAPHY

[129]

[130]

[131]

[132]

133

[134]

[135]

[136]

[137]

Scale Study of Data Center Network Reliability. In Proceedings of the Internet
Measurement Conference.

Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.
SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switch-
ing ASICs. In Proceedings of SIGCOMM.

Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shujun Zhuang, Bo Li, Shuguang
Cheng, Jiaqi Gao, Yan Zhuang, Pengcheng Zhang, et al. 2022. From luna to solar:
the evolutions of the compute-to-storage networks in Alibaba cloud. In Proceedings
of SIGCOMM.

Radhika Mittal, Nandita Dukkipati, Emily Blem, Hassan Wassel, Monia Ghobadi,
Amin Vahdat, Yaogong Wang, David Wetherall, David Zats, et al. 2015. TIMELY::
RTT-based Congestion Control for the Datacenter. In Proceedings of SIGCOMM.
Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi, Arvind Krishna-
murthy, Sylvia Ratnasamy, and Scott Shenker. 2018. Revisiting Network Support
for RDMA. In Proceedings of SIGCOMM.

Edgar Costa Molero, Stefano Vissicchio, and Laurent Vanbever. 2022. FAst In-
Network GraY Failure Detection for ISPs. In Proceedings of SIGCOMM.
Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. 2018.
Homa: A Receiver-Driven Low-Latency Transport Protocol Using Network Prior-
ities. In Proceedings of SIGCOMM.

Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. 2016. Trum-
pet: Timely and precise triggers in data centers. In Proceedings of SIGCOMM.
Ali Munir, Ghufran Baig, Syed M Irteza, Thsan A Qazi, Alex X Liu, and Fahad R
Dogar. 2015. Friends, not foes: synthesizing existing transport strategies for data
center networks. In Proceedings of SIGCOMM.

Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat

Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. 2017.

BIBLIOGRAPHY 155

[138]

[139]
[140]

[141]

[142]

[143]
[144]

[145]

[146]

[147]

Language-directed hardware design for network performance monitoring. In Pro-
ceedings of SIGCOMM.

Arista Networks. 2015. Latency Analyzer (LANZ) Architectures and Configura-
tion. (2015). https://goo.gl/LrRNi4d

Barefoot Networks. 2018. Tofino. (2018). https://goo.gl/cdEKIE

Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson Huang,
Pardis Miri, Sivasankar Radhakrishnan, Vikram Subramanya, and Amin Vahdat.
2009. Portland: a scalable fault-tolerant layer 2 data center network fabric. In
Procedings of SIGCOMM.

Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson Huang,
Pardis Miri, Sivasankar Radhakrishnan, Vikram Subramanya, and Amin Vahdat.
2009. PortLand: A Scalable Fault-Tolerant Layer 2 Data Center Network Fabric.
In Proceedings of SIGCOMM.

Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. 2013. Scaling Memcache at
Facebook. In Proceedings of NSDI.

Ntop. 2018. n2disk. (2018). https://goo.gl/7DFkSp

NVIDIA. 2022. Mellanox Connect X-6. (2022). https://www.nvidia.com/en-
sg/networking/ethernet/connectx-6.

NVIDIA. 2022. RDMA Transport Modes. (2022). https://docs.nvidia.com/
networking/display/RDMAAwareProgrammingv17/Transport+Modes.

NVIDIA. 2022. RoCE Selective Repeat. (2022). https://docs.nvidia.com/
networking/m/view-rendered-page.action?abstractPageId=25137694.

Ping Pan, George Swallow, and Alia Atlas. 2005. Fast reroute extensions to RSVP-
TE for LSP tunnels. IETF RFC 4090. (2005). https://tools.ietf.org/html/

rfc4090.

https://goo.gl/LrRNi4
https://goo.gl/cdEK1E
https://goo.gl/7DFkSp
https://www.nvidia.com/en-sg/networking/ethernet/connectx-6
https://www.nvidia.com/en-sg/networking/ethernet/connectx-6
https://docs.nvidia.com/networking/display/RDMAAwareProgrammingv17/Transport+Modes
https://docs.nvidia.com/networking/display/RDMAAwareProgrammingv17/Transport+Modes
https://docs.nvidia.com/networking/m/view-rendered-page.action?abstractPageId=25137694
https://docs.nvidia.com/networking/m/view-rendered-page.action?abstractPageId=25137694
https://tools.ietf.org/html/rfc4090
https://tools.ietf.org/html/rfc4090

156

BIBLIOGRAPHY

[148]

[149]

[150]
[151]

[152]

[153]

[154]

[155]

[156]

[157]

Christina Parsa and JJ Garcia-Luna-Aceves. 1999. TULIP: A Link-Level Protocol
for Improving TCP over Wireless Links. In Proceedings of WCNC.

Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans
Fugal. 2014. Fastpass: A Centralized "Zero-Queue” Datacenter Network. In Pro-
ceedings of SIGCOMM.

Peter Phaal. 2004. sFlow. (2004). http://sflow.org/sflow

Amar Phanishayee, Elie Krevat, Vijay Vasudevan, David G Andersen, Gregory R
Ganger, Garth A Gibson, and Srinivasan Seshan. 2008. Measurement and Analysis
of TCP Throughput Collapse in Cluster-based Storage Systems. In Proceedings of
FAST.

Ting Qu, Raj Joshi, Mun Choon Chan, Ben Leong, Deke Guo, and Zhong Liu.
2019. SQR: In-network packet loss recovery from link failures for highly reliable
datacenter networks. In Proceedings of ICNP.

Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen Yin, Qiaobin Fu, Gautam
Kumar, Masoud Moshref, Junhua Yan, Van Jacobson, David Wetherall, and Abdul
Kabbani. 2022. PLB: Congestion Signals Are Simple and Effective for Network
Load Balancing. In Proceedings of SIGCOMM.

Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren.
2015. Inside the social network’s datacenter network. In Proceedings of SIG-
COMM.

Stephen M Rumble, Diego Ongaro, Ryan Stutsman, Mendel Rosenblum, and
John K Ousterhout. 2011. It’s Time for Low Latency. In Proceedings of HotOS.
Matt Sargent, Mark Allman, and Vern Paxson. 2011. Computing TCP’s Re-
transmission Timer. IETF RFC 6298. (2011). https://tools.ietf.org/html/
rfc6298.

Eric Schurman and Jake Brutlag. 2009. The User and Business Impact of Server
Delays, Additional Bytes, and Http Chunking in Web Search. (2009).

http://sflow.org/sflow
https://tools.ietf.org/html/rfc6298
https://tools.ietf.org/html/rfc6298

BIBLIOGRAPHY 157

[158]

159

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

Roshan Sedar, Michael Borokhovich, Marco Chiesa, Gianni Antichi, and Stefan
Schmid. 2018. Supporting Emerging Applications With Low-Latency Failover in
P4. In Proceedings of NEAT.

Seladb. 2018. PcapPlusPlus. (2018). https://github.com/seladb/
PcapPlusPlus

Danfeng Shan, Fengyuan Ren, Peng Cheng, Ran Shu, and Chuanxiong Guo. 2018.
Micro-Burst in Data Centers: Observations, Analysis, and Mitigations. In Pro-
ceedings of ICNP.

Naveen Kr Sharma, Ming Liu, Kishore Atreya, and Arvind Krishnamurthy.
2018. Approximating Fair Queueing on Reconfigurable Switches. In Proceedings
of NSDI.

Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet, and Piet De-
meester. 2013. OpenFlow: Meeting carrier-grade recovery requirements. Computer
Communications 36, 6 (2013), 656-665.

Rajath Shashidhara, Tim Stamler, Antoine Kaufmann, and Simon Peter. 2022.
FlexTOE: Flexible TCP Offload with Fine-Grained Parallelism. In Proceedings of
NSDI

Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, et al. 2015.
Jupiter rising: A decade of clos topologies and centralized control in Google’s
datacenter network. In Proceedings of SIGCOMM.

Ankit Singla, Chi-Yao Hong, Lucian Popa, and P Brighten Godfrey. 2012. Jellyfish:
Networking data centers randomly. In Proceedings of NSDI.

R Sivaram. 2008. Some Measured Google Flow Sizes. Google internal memo,
available on request (2008).

SNIA. 2018. SFF-8679: QSFP+ 4X Hardware and Electrical Specification. (2018).

https://members.snia.org/document/d1l/25969

https://github.com/seladb/PcapPlusPlus
https://github.com/seladb/PcapPlusPlus
https://members.snia.org/document/dl/25969

158

BIBLIOGRAPHY

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

Steve Sounders. 2009. Velocity and the Bottom Line. (2009). Retrieved
2022-04-22 from http://radar.oreilly.com/2009/07/velocity-making-your-
site-fast.html

Statista. 2021. Worldwide Internet Usage. (2021). Retrieved 2022-03-24
from https://www.statista.com/statistics/617136/digital-population-
worldwide/

TechCrunch. 2013. Microsoft To Refund Windows Azure Customers Hit By
12 Hour Outage That Disrupted Xbox Live. (2013). Retrieved 2022-03-25
from https://techcrunch.com/2013/02/24/microsoft-to-refund-windows-
azure-customers-hit-by-12-hour-outage-that-disrupted-xbox-live/
Frank Uyeda, Luca Foschini, Fred Baker, Subhash Suri, and George Varghese.
2011. Efficiently Measuring Bandwidth at All Time Scales. In Proceedings of NSDI.
Amin Vahdat. 2017. ONS Keynote: Cloud Native Networking. (2017). https:
//youtu.be/1xBZ5DGZZmQ7t=1460

Balajee Vamanan, Jahangir Hasan, and TN Vijaykumar. 2012. Deadline-aware
datacenter TCP (D2TCP). In Proceedings of SIGCOMM.

Niels LM Van Adrichem, Benjamin J Van Asten, and Fernando A Kuipers. 2014.
Fast recovery in software-defined networks. In Proceedings of EWSDN.

Vijay Vasudevan, Amar Phanishayee, Hiral Shah, Elie Krevat, David G Andersen,
Gregory R Ganger, Garth A Gibson, and Brian Mueller. 2009. Safe and effective
fine-grained TCP retransmissions for datacenter communication. In Proceedings of
SIGCOMM.

Ashish Vulimiri, Oliver Michel, P Godfrey, and Scott Shenker. 2012. More is Less:
Reducing Latency via Redundancy. In Proceedings of HotNets.

Shuai Wang, Kaihui Gao, Kun Qian, Dan Li, Rui Miao, Bo Li, Yu Zhou, Ennan
Zhai, Chen Sun, Jiaqi Gao, Dai Zhang, Binzhang Fu, Frank Kelly, Dennis Cali,

http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.statista.com/statistics/617136/digital-population-worldwide/
https://techcrunch.com/2013/02/24/microsoft-to-refund-windows-azure-customers-hit-by-12-hour-outage-that-disrupted-xbox-live/
https://techcrunch.com/2013/02/24/microsoft-to-refund-windows-azure-customers-hit-by-12-hour-outage-that-disrupted-xbox-live/
https://youtu.be/1xBZ5DGZZmQ?t=1460
https://youtu.be/1xBZ5DGZZmQ?t=1460

BIBLIOGRAPHY 159

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

Hongqgiang Harry Liu, and Ming Zhang. 2022. Predictable vFabric on Informative
Data Plane. In Proceedings of SIGCOMM.

Jim Warner. [n. d.]. Packet Buffers. ([n. d.]). https://people.ucsc.edu/
~warner/buffer.html.

Jim Warner. 2019. Packet Buffers. (2019). https://people.ucsc.edu/~warner/
buffer.html

Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron. 2011.
Better Never than Late: Meeting Deadlines in Datacenter Networks. In Proceedings
of SIGCOMM.

Dingming Wu, Yiting Xia, Xiaoye Steven Sun, Xin Sunny Huang, Simbarashe
Dzinamarira, and TS Eugene Ng. 2018. Masking Failures from Application Per-
formance in Data Center Networks with Shareable Backup. In Procedings of SIG-
COMM.

Xin Wu, Daniel Turner, Chao-Chih Chen, David A Maltz, Xiaowei Yang, Lihua
Yuan, and Ming Zhang. 2012. NetPilot: Automating datacenter network failure
mitigation. In Proceedings of SIGCOMM.

Mingran Yang, Alex Baban, Valery Kugel, Jeff Libby, Scott Mackie, Swamy
Sadashivaiah Renu Kananda, Chang-Hong Wu, and Manya Ghobadi. 2022. Using
Trio: Juniper Networks’ programmable chipset-for emerging in-network applica-
tions. In Proceedings of SIGCOMM.

Kiran Yedugundla, Per Hurtig, and Anna Brunstrom. 2017. Probe or Wait: Han-
dling tail losses using Multipath TCP. In Proceddings of IFIP Networking.

David Zats, Anand Padmanabha Iyer, Randy H. Katz, Ion Stoica, and Amin
Vahdat. 2013. FastLane: An Agile Congestion Signaling Mechanism for Improving
Datacenter Performance. In Proceedings of SoCC.

Gaoxiong Zeng, Li Chen, Bairen Yi, and Kai Chen. 2022. Cutting Tail Latency in
Commodity Datacenters with Cloudburst. In Proceedings of INFOCOM.

https://people.ucsc.edu/~warner/buffer.html
https://people.ucsc.edu/~warner/buffer.html
https://people.ucsc.edu/~warner/buffer.html
https://people.ucsc.edu/~warner/buffer.html

160

BIBLIOGRAPHY

[187]

[188]

[189)]

[190]

[191]

[192]

193]

Ming Zhang, Yu Hua, Pengfei Zuo, and Lurong Liu. 2022. FORD: Fast One-sided
RDMA-based Distributed Transactions for Disaggregated Persistent Memory. In
Proceedings of FAST.

Qiao Zhang, Vincent Liu, and Hongyi Zeng. 2017. High-Resolution Measurement
of Data Center Microbursts. In Proceedings of IMC.

Yu Zhou, Chen Sun, Honggiang Harry Liu, Rui Miao, Shi Bai, Bo Li, Zhilong
Zheng, Lingjun Zhu, Zhen Shen, Yongqing Xi, et al. 2020. Flow event telemetry
on programmable data plane. In Proceedings of SIGCOMM.

Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion control for large-scale RDMA deployments. In
Proceedings of SIGCOMM.

Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Maha-
jan, Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y Zhao, et al. 2015. Packet-level
telemetry in large datacenter networks. In Proceedings of SIGCOMM.

Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-Tycho Férster, Arvind Kr-
ishnamurthy, and Thomas Anderson. 2017. Understanding and mitigating packet
corruption in data center networks. In Proceedings of SIGCOMM.

Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Xuan Kelvin
Zou, Hang Guan, Arvind Krishnamurthy, and Thomas Anderson. 2017. RAIL:
A Case for Redundant Arrays of Inexpensive Links in Data Center Networks. In

Proceedings of NSDI.

	Abstract
	List of Publications
	List of Figures
	List of Tables
	Introduction
	Challenges in providing tail FCT SLA Guarantees
	FCT increase due to congestion events
	FCT increase due to network failure events

	The In-Network Approach
	Why the In-network approach works?

	Summary of Thesis Contributions
	BurstRadar
	SQR
	LinkGuardian

	Thesis Structure

	Related Work
	Handling Congestion Events
	Monitoring Microbursts

	Handling Link Failure Events
	Handling Fail-stop Link Failures
	Handling Gray Link Failures

	BurstRadar
	Introduction
	System Design
	Snapshot Algorithm
	Courier Packet Generation
	Ring Buffer
	Implementation

	Evaluation
	Efficiency
	Handling Concurrent Microbursts
	Resource Utilization

	Summary

	SQR
	Introduction
	Motivation
	SQR Design
	Caching Packets on the Switch.
	Multi-Queue Ring Architecture
	Delay Timer
	Dynamic Queue Selection
	Packet Order Logic
	Implementation

	Performance Evaluation
	Experimental setup
	Masking Link Failures from TCP
	Latency-sensitive Workloads
	Overhead

	Discussion
	Summary

	LinkGuardian
	Introduction
	The Case for Mitigating Link Corruption
	Impact of Higher Link Speeds
	Most flows are short flows
	Impact of RDMA Workloads

	LinkGuardian
	Fast ACKs for minimum Buffer Overhead
	Tail Losses for Single-Packet Flows
	Reordering Buffer without Overflow
	Mitigating Potential ReTx Losses
	Implementation Details
	Repairing Corrupting Links in Practice

	Evaluation
	Parameter Tuning
	Effective Loss Rate & Link Speed
	Impact on Transport Protocols
	Tail Packet Loss and Short Flows
	Contribution of different mechanisms
	Overhead
	Comparison with Wharf
	Effectiveness in large-scale deployment

	Discussion and Future work
	Summary

	Conclusion and Future Directions
	Future Directions
	Temporal packet buffering beyond handling link failures
	Better dataplane primitives for temporal packet buffering
	Fast and Efficient Monitoring of Link Failures
	Scaling to future link speeds
	Adoption in practice

	Summary of Thesis Contributions

	Appendices
	LinkGuardian
	Protocol Details
	Loss Detection & Notification
	Sender-side Buffering & Retransmission

	Monitoring Links for Corruption
	Link Corruption Trace Generation

	Bibliography

