
TimerTasks: Towards Time-driven Execution
in Programmable Dataplanes

Raj Joshi
rajjoshi@comp.nus.edu.sg

National University of Singapore

Ben Leong
benleong@comp.nus.edu.sg

National University of Singapore

Mun Choon Chan
chanmc@comp.nus.edu.sg

National University of Singapore

CCS CONCEPTS
• Networks→ Programmable networks.

1 INTRODUCTION
Current programmable dataplanes provide an event-driven exe-
cution model based on the match-action paradigm [4]. An action
is triggered by the arrival of a packet as defined by the match
specification. Any logic that is programmed executes only when
there is a packet event, and no action will be triggered otherwise.
This behavior is expected since programmable dataplanes were
primarily designed to realize reconfigurable packet forwarding in
the hardware [3].

In recent years, programmable dataplanes are being used to
implement advanced applications not earlier envisioned, such as
in-network caching [8, 9], consensus protocols [7, 15] and others.
The implementation for many of these systems require an action to
be taken even in the absence of a packet arrival. For example, in the
Raft consensus protocol [10], a missing heartbeat from the leader
is expected to trigger a leader election after a timeout. Existing
programmable dataplane architectures however do not support
such time-driven semantics.

In this poster, we first describe how time-driven execution in the
dataplane can help protocols and applications offload new function-
ality to the dataplane (§1.1). We then propose a new abstraction
called TimerTasks that allows us to express the required time-driven
semantics in an extended P4 language syntax (§2). We implement
the TimerTask primitive on top of existing event-driven hardware
(§2.1) and demonstrate its utility via three novel applications (§3).
Finally, we discuss the limitations and future work (§4).

1.1 Case for time-driven execution
In this section, we illustrate how time-driven execution can enable
the implementation of new functionality in the dataplane.

Fast link failure detection.Mechanisms such as BFD [5] are
limited to sub-second link failure detection times with existing
control plane implementation. A dataplane implementation of such
a mechanism can do better, but it is not straightforward with the
current event-driven execution model. This is because such a pro-
tocol requires action to be taken after a timeout, in the absence of a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM Posters and Demos ’19, August 19–23, 2019, Beijing, China
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6886-5/19/08. . . $15.00
https://doi.org/10.1145/3342280.3342310

packet. Time-driven execution in the dataplane will allow actions
to be taken based on aggressive timeouts (order of µs), thereby
enabling orders of magnitude smaller detection times. While link
failure detection is a network-specific example, it represents an
entire class of application-level heartbeat protocols that are used in
distributed computing frameworks (e.g. Spark [13], and Heron [6]).

Avoid agingmetrics, refresh them! In systems such as CONGA [1]
and DistCache [9], switches communicate certain metrics to each
other by piggybacking them on top of regular traffic. The switch
that receives the metrics needs to age them since they may not
remain up-to-date when there is insufficient regular traffic. With
time-driven execution, it would be possible to refresh the metrics
instead of aging them. In particular, the switch that is the source
of a metric can explicitly send the updated metric to the recipient
switch even when there is no regular traffic between them.

High-resolution network measurements. High-resolution
network measurements are required to understand the behavior of
today’s high-speed networks. Zhang et al. implemented a measure-
ment framework that could poll counters from the switch ASIC
every 25 µs using the switch CPU [14]. However, this interval was
found to be too coarse to reliably measure the duration of link
utilization bursts (cf. Fig. 3 in [14]). With time-driven execution in
the dataplane, the counters can be retrieved at regular and much
smaller intervals.

2 TIMERTASK ABSTRACTION
After studying the above use-cases for time-driven execution, we
propose the following execution semantic: if a condition (predicate)
remains true for a timeout interval, then execute certain action. This
semantic can also express the periodic execution of an action by
setting the condition to be always true.

TimerTask. We formalize the above semantic as a high-level
abstraction called TimerTask. The TimerTask abstraction is designed
as an extension to the P4 language. It has three parts: (i) a Reset-
Match specification, (ii) a timeout value, and (iii) an action. The
Reset-Match specification is similar to the P4 match specification,
the timeout value is a non-zero positive constant, and the action is
a standard P4 action. For a given TimerTask, the system runtime
implements a timer with value equal to the timeout. Unless reset
preemptively, the timer counts down to zero and then repeats. If
a packet matches the Reset-Match specification (which we call
a “hit”), the timer is reset. But if no packet matches the Reset-
Match specification for the timeout interval, the timer expires and
the corresponding action is executed. Listing 1 shows a sample
TimerTask for implementing link failure detection. Semantically,
this TimerTask expresses the logic that if there is no packet from
an adjacent switch (identified by the ingress_port) for 3 µs, then
send a ping request to that switch. Like multiple entries for a P4

69

https://doi.org/10.1145/3342280.3342310

SIGCOMM Posters and Demos ’19, August 19–23, 2019, Beijing, China Joshi, et al.

t ime r t a s k l i n k _ f a i l u r e _ d e t e c t i o n {
r e se tmatch = {

s tandard_metadata . i n g r e s s _ p o r t : e x a c t ;
}
t imeout = 3 ; / / i n m i c r o s e c o n d s
a c t i o n = send_p ing_ r eque s t ;

}

Listing 1: TimerTask for Link Failure Detection

match-action table, each TimerTask can have multiple “instances”
for different value pairs of Reset-Match and action data.

2.1 Implementing TimerTasks
TimerTasks can be implemented as a new hardware extension to a
programmable switch machine model such as Banzai [12]. In this
poster, we demonstrate how they can also be implemented on top
of existing programmable hardware so as to be readily deployable.
The main challenge is in implementing time-driven execution on
top of existing event-driven hardware.

Inspired by the Linux operating system, our key idea is to have a
periodic-event framework that uses periodic-events to orchestrate
time-driven execution. Periodic-events are achieved by generating
periodic packets (called dataplane ticks). The actual implementation
of dataplane ticks depends on the target hardware.

The periodic-event frameworkmaintains timers for all the Timer-
Task instances using the on-chip memory. For each dataplane tick,
the timers are decremented and for the expired timers, the corre-
sponding actions are executed. The resetting of timers on a Reset-
Match “hit” is achieved using match-action tables. Also, TimerTask
actions can re-purpose the dataplane tick packets as new packets
to send out. We omit further details due to space constraints.

Compiling TimerTasks. TimerTask is a new P4 “object” that
can be coupled with rest of the P4 program to form the required
logic. A TimerTask compiler can first add the TimerTasks into the
periodic-event framework (implemented in P4) and then merge the
framework with the rest of the program. The resulting P4 program
can be then fed to a regular P4 compiler. In the current design,
TimerTasks are specified at compile time while the instances are
added during the runtime. The TimerTask compiler can also gener-
ate a TimerTask runtime layer that allows for adding and deleting
TimerTask instances. Under the hood, the TimerTask runtime adds
or removes entries from tables of the periodic-event framework.

Related Approaches. It is possible to implement simple peri-
odic tasks using manually crafted match-action tables and periodic
packets. However, a TimerTask provides a high-level abstraction
and richer semantics such as taking an action in response to the
absence of a specific packet or a condition.

3 EVALUATION
We evaluated TimerTasks in terms of their utility by conducting
three proof-of-concept case studies. Our testbed consists of two
Barefoot Tofino switches and two x86_64 servers connected in a
linear topology via 10Gbps links.

We used Tofino’s on-chip packet generator to generate the data-
plane ticks. Being on-chip, the packet generator is a reliable source
of dataplane ticks as there are no issues related to link disruption
and the generated packets have very low probability of getting

lost before entering the pipeline. For timely execution of Timer-
Tasks, it is important that the dataplane ticks have low-jitter. We
configured Tofino’s packet generator to generate packets at differ-
ent intervals (which we call a “tick period”) and used dataplane
timestamps to measure the actual packet inter-arrival times in the
pipeline. Our measurements show that the 99th percentile error in
the inter-arrival times is less than 0.1% for different tick periods
from 1 µs to 100ms. In summary, on-chip packet generators can
provide reliable and timely dataplane ticks.

Fast Link Failure Detection. We implemented a link failure
detection protocol that uses normal traffic as an indicator of con-
nectivity, but explicitly pings the adjacent switch when there is no
packet for 3 µs (Listing 1). Our experiments show that this protocol
can detect link failures within 6 µs, which is orders of magnitude
faster than BFD [5].

Metric Refreshing.We implemented a novel metric refreshing
(updating) mechanism to explicitly update piggybacked metrics in
lieu of sufficient normal traffic to piggyback them. The benefit of
such a scheme for network [1] and application load distribution [9]
remains to be quantified.

High-resolution Network Measurements. We implemented
a periodic TimerTask that is able to read the switch counters at
1 µs intervals providing 25 times finer resolution than the previous
high-resolution measurement [14]. Unlike [14], our solution runs
entirely in the dataplane and therefore avoids the overhead and
unpredictability involved in polling dataplane counters from the
control plane.

4 DISCUSSION AND FUTUREWORK
Our preliminary design of the periodic-event framework is simple
and cannot decrement all the timers with a single dataplane tick
packet. This is due to the restrictions on updating the on-chip trans-
actional stateful memory. As a result, one dataplane tick packet is
required for each TimerTask instance. This adds additional pipeline
processing overhead when supporting a large number of TimerTask
instances.

However, the typical network load conditions are such that there
is almost always spare pipeline processing capacity available [14].
Further, pipelines are often provisioned for a few extra ports other
than the front-panel ports for facilitating packet generation [2] or
backplane data connections [11]. For a 100Gbps pipeline, a single
100Gbps extra port provides a spare headroom of up to 150Mpps
which can be used to support 150 TimerTask instances with a tick
period of 1 µs without affecting the normal traffic from the front-
panel ports. In practice, we do not expect a large number of Timer-
Tasks instances with very small tick periods. For a tick period of
100 µs, a spare headroom of 150Mpps can support 15,000 TimerTask
instances.

There is still further scope to improve the periodic-event frame-
work such that multiple TimerTask instances can be updated with
a single dataplane tick packet to further scale the system. Corre-
spondingly, the TimerTask compiler would need to become more
sophisticated to combine multiple TimerTasks appropriately. In
the longer term, we argue that TimerTasks should be supported
natively in hardware, which we plan to study as well.

70

TimerTasks SIGCOMM Posters and Demos ’19, August 19–23, 2019, Beijing, China

REFERENCES
[1] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Francis Matus, Rong Pan, Navindra
Yadav, George Varghese, et al. 2014. CONGA: Distributed congestion-aware load
balancing for datacenters. In Proceedings of SIGCOMM.

[2] Barefoot Tofino 2019. https://goo.gl/cdEK1E.
[3] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer

Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.
2014. P4: Programming protocol-independent packet processors. SIGCOMM CCR
44, 3 (2014), 87–95.

[4] Pat Bosshart, GlenGibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin
Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding metamorphosis:
Fast programmable match-action processing in hardware for SDN. In Proceedings
of SIGCOMM.

[5] Dave Katz and Dave Ward. 2010. Bidirectional Forwarding Detection. RFC 5880.
[6] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher

Kellogg, Sailesh Mittal, Jignesh M Patel, Karthik Ramasamy, and Siddarth Taneja.
2015. Twitter Heron: Stream processing at scale. In Proceedings of SIGMOD.

[7] Jialin Li, Ellis Michael, Naveen Kr Sharma, Adriana Szekeres, and Dan RK Ports.
2016. Just Say NO to Paxos Overhead: Replacing Consensus with Network
Ordering. In Proceedings of OSDI.

[8] Jialin Li, Jacob Nelson, Xin Jin, and Dan RK Ports. 2018. Pegasus: Load-Aware
Selective Replication with an In-Network Coherence Directory. Technical Report

UW-CSE-18-12-01. University of Washington.
[9] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim, Vladimir

Braverman, Xin Jin, and Ion Stoica. 2019. DistCache: Provable load balancing for
large-scale storage systems with distributed caching. In Proceedings of FAST.

[10] Diego Ongaro and John Ousterhout. 2014. In search of an understandable Con-
sensus Algorithm. In Proceedings of ATC.

[11] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, et al. 2015.
Jupiter Rising: A decade of Clos Topologies and Centralized Control in Google’s
Datacenter Network. In Proceedings of SIGCOMM.

[12] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad
Alizadeh, Hari Balakrishnan, George Varghese, NickMcKeown, and Steve Licking.
2016. Packet transactions: High-level programming for line-rate switches. In
Proceedings of SIGCOMM.

[13] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and
Ion Stoica. 2010. Spark: Cluster computing with working sets. In Proceedings of
HotCloud.

[14] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy. 2017. High-
resolution measurement of data center microbursts. In Proceedings of IMC.

[15] Yang Zhang, Bo Han, Zhi-Li Zhang, and Vijay Gopalakrishnan. 2017. Network-
assisted Raft Consensus Algorithm. In Proceedings of SIGCOMM Posters and
Demos.

71

https://goo.gl/cdEK1E

	1 Introduction
	1.1 Case for time-driven execution

	2 TimerTask Abstraction
	2.1 Implementing TimerTasks

	3 Evaluation
	4 Discussion and Future Work
	References

