
Masking Corruption Packet Losses in Datacenter Networks with
Link-local Retransmission

Raj Joshi†, Cha Hwan Song†, Xin Zhe Khooi†, Nishant Budhdev‡, Ayush Mishra†,
Mun Choon Chan†, Ben Leong†

†National University of Singapore ‡Nokia Bell Labs

ABSTRACT
Packet loss due to link corruption is a major problem in large
warehouse-scale datacenters. The current state-of-the-art approach
of disabling corrupting links is not adequate because, in practice,
all the corrupting links cannot be disabled due to capacity con-
straints. In this paper, we show that, it is feasible to implement
link-local retransmission at sub-RTT timescales to completely mask
corruption packet losses from the transport endpoints. Our system,
LinkGuardian, employs a range of techniques to (i) keep the packet
buffer requirement low, (ii) recover from tail packet losses without
employing timeouts, and (iii) preserve packet ordering. We imple-
ment LinkGuardian on the Intel Tofino switch and show that for
a 100G link with a loss rate of 10-3, LinkGuardian can reduce the
loss rate by up to 6 orders of magnitude while incurring only 8%
reduction in effective link speed. By eliminating tail packet losses,
LinkGuardian improves the 99.9th percentile flow completion time
(FCT) for TCP and RDMA by 51x and 66x respectively. Finally, we
also show that in the context of datacenter networks, simple out-
of-order retransmission is often sufficient to significantly mitigate
the impact of corruption packet loss for short TCP flows.

CCS CONCEPTS
•Hardware→ Failure recovery, maintenance and self-repair;
• Networks → In-network processing; Physical links; Data
center networks; Programmable networks; Link-layer protocols.

KEYWORDS
Packet corruption, Link failures, Optical links, Link-local retrans-
mission, Programmable switches, In-network packet loss recovery
ACM Reference Format:
Raj Joshi, Cha Hwan Song, Xin Zhe Khooi, Nishant Budhdev, Ayush Mishra,
Mun Choon Chan and Ben Leong. 2023. Masking Corruption Packet Losses
in Datacenter Networks with Link-local Retransmission . In ACM SIGCOMM
2023 Conference (ACM SIGCOMM ’23), September 10–14, 2023, New York, NY,
USA. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/3603269.
3604853

1 INTRODUCTION
Optical links are commonly used as switch-to-switch links in mod-
ern datacenter networks [61]. Unfortunately, external factors such
as physical damage, bending, or contamination due to airborne

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0236-5/23/09.
https://doi.org/10.1145/3603269.3604853

10-8

10-6

10-4

10-2

100

 9 10 11 12 13 14 15 16 17 18

higher
baudratedenser

modulation

Pa
ck

e
t

Lo
ss

 R
a
te

Optical Attenuation (dB)

50GBASE-SR (FEC)
25GBASE-SR

25GBASE-SR (FEC)
10GBASE-SR

Figure 1: Effect of optical attenuation on various Ethernet
link speeds (1518B frames).

dirt particles, can cause optical attenuation and make optical links
susceptible to data transmission errors [15, 61]. As a result, packet
losses due to corruption on optical links in large warehouse-scale
datacenters are common. Alibaba’s recent study of hundreds of
real-world service tickets showed that about 18% of the packet
drops that caused network performance anomalies (NPAs) were
due to packet corruption [59]. Another large-scale study across 15
Microsoft datacenters consisting of 350K optical links showed that
the number of packets lost due to corruption is comparable to those
lost due to congestion [61].

At the same time, Ethernet link speeds continue to increase,
having increased from 25G [26] in 2016 to 400G [29] in recent
years. This increase has been achieved through a combination of
using multiple parallel PHY lanes, higher baudrate, and denser
modulation. Figure 1 shows the result of a measurement experiment
(details in §2) where we can see that, as the link speeds continue to
increase through the use of higher baudrate (from 10G to 25G) and
denser modulation (from 25G to 50G), optical links are becoming
more susceptible to optical attenuation and thus corruption packet
loss.

Optical corruption can only be remedied by physically repair-
ing the damaged links, which can take between several hours to
days [61]. During this time, the impact of corruption can only be
mitigated. The current state-of-the-art approach to mitigate corrup-
tion packet loss is to disable the corrupting links while maintaining
a certain minimum network capacity [56, 61]. However, this ap-
proach is not sufficient, as it is often not feasible for some corrupting
links to be disabled without violating capacity constraints. Such
links will continue to cause packet drops thereby negatively im-
pacting both throughput and latency-sensitive flows. Data from
Microsoft datacenters shows that up to 15% of the corrupting links
cannot be disabled under realistic capacity constraints [61].

In this paper, we apply the classical loss recovery strategy of
link-local retransmission for mitigating corruption packet loss
in datacenter networks. Link-local retransmission has been stud-
ied extensively [8, 9, 44] and deployed widely in wireless net-
works [1, 2, 23, 24]. It has desirable properties such as the recovery
overheads are proportional to the corruption loss rate and are local-
ized to only the corrupting link. It can achieve sub-RTT recovery,

https://doi.org/10.1145/3603269.3604853
https://doi.org/10.1145/3603269.3604853
https://doi.org/10.1145/3603269.3604853

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Joshi et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105 106 107

1024
1500

C
D

F

Message/ Flow Size (Bytes)

Meta key-value
Google search RPC

Google all RPC
Meta Hadoop

Alibaba storage
DCTCP web search

Figure 2: Flows size distribution of several datacenter work-
loads from 2008 to 2019 [3, 7, 34, 47, 52].

and since it is agnostic to the end-hosts, it is amenable to any
transport protocol including RDMA. Yet, despite these advantages,
link-local retransmissions have never been deployed in the context
of datacenter networks to the best of our knowledge.

We suspect that this is because deploying link-local retransmis-
sion in datacenter networks is challenging for the following reasons:
first, link-local retransmission requires packet buffering while dat-
acenter switch buffers are generally small. The problem is further
exacerbated by high link speeds that will generally require more
buffering. Second, most flows in datacenter networks are short (see
Figure 2), which increases the probability of tail packet loss. Such
tail losses need to be detected and recovered at microsecond scales
to provide bounded tail FCT guarantees and meet the stringent
Service Level Agreements (SLAs) [13, 37, 54, 59]. Third, RDMA is
being widely deployed in modern datacenters [19, 21, 37, 60] which
is more sensitive to packet reordering than TCP [22]. Therefore,
packet ordering needs to be preserved while performing link-local
retransmission.

In this paper, we show that, withmodern programmable switches,
it is now feasible to implement link-local retransmission in datacen-
ter networks. Our system, LinkGuardian, can overcome the above
challenges by implementing the following mechanisms: (1) a fast
and efficient (low overhead) loss detection and recovery protocol
to keep the recovery delay and thus the buffering requirement
small (§3.1 and §3.4); (2) a novel mechanism to detect tail packet
losses quickly and efficiently using a self-replenishing queue of
“dummy packets” without the need for a timeout (§3.2); and (3) a
“reordering buffer” at the receiver switch to maintain packet order-
ing along with a backpressure mechanism to ensure that the buffer
does not overflow (§3.3). While individually these techniques are
relatively straightforward, our key insight is that their combination
is sufficient to make link-local retransmission feasible in modern
datacenter networks.

Conventional wisdom says that link-local retransmissions need
to preserve packet ordering to prevent the transport layer from
triggering spurious loss recovery and reduction of the sending
rate [3, 4, 8, 10, 60]. We will show that in the context of datacenters,
it is not always necessary to preserve packet ordering (§4.3). The
key insight is that most flows in datacenter networks are short [37,
46] and most flows fit within one packet requiring only 1 RTT to
complete [37] (see Figure 2). When a flow fits within a single packet,
we do not need to worry about ordering for both TCP and RDMA.
For multi-packet TCP flows, out-of-order retransmission can still
provide significant corruption loss mitigation for TCP flows at
100G speeds even if we cannot retransmit within TCP’s reordering
window. This is because even when a TCP flow spans multiple
packets, it lasts only a few RTTs (flows being short). This means
that if there is a corruption loss, it mostly occurs just once and thus

Do NOT use the Link Use the link

Disable the link
(CorrOpt)

Avoid the link (RAIL)

End-to-End Link-local

Redundancy
(RAIL,

CloudBurst)

ReTx
(TCP, IRN,
FUSO)

Redundancy
(Ethernet FEC,

Wharf)

ReTx
(Link

Guardian)

Figure 3: Design space for handling corrupting links in data-
center networks.

reordering happens at most once which has minimal impact on the
FCT (§4.4). To this end, we show that a non-blocking variant of
LinkGuardian (that implements out-of-order retransmission) not
only has lower overheads but can scale better to higher link speeds
(§4.1). However, for multi-packet RDMA flows, we currently still
need to preserve packet ordering due to its go-back-N transport
recovery.

LinkGuardian is currently implemented on an Intel Tofino switch
and our testbed evaluation shows that (i) for a 100G link with a
loss rate of 10-3, LinkGuardian can reduce the loss rate by up to
6 orders of magnitude while incurring only 8% reduction in the
link’s effective link speed and requiring less than 90KB of packet
buffer; and (ii) LinkGuardian improves the 99.9th percentile FCT
for TCP and RDMA by 51x and 66x respectively by handling tail
packet losses at sub-RTT timescales. Furthermore, LinkGuardian
is complementary to existing solutions for handling corrupting
links. By augmenting CorrOpt [61] (current state-of-the-art) with
LinkGuardian, we can reduce the total loss rate in a large datacenter
network by at least 4 orders of magnitude, and allow network
operators to operate the network at a higher average capacity that
was not previously possible.

Themain limitation of our current implementation is that recircu-
lation is used for packet buffering because of hardware constraints
(Tofino). With more advanced hardware like the Tofino2 [33], it
will be possible to implement LinkGuardian more efficiently.

2 BACKGROUND & RELATEDWORK
There is a large body of literature on the mitigation of network
faults. In particular, we lay out the design space for mitigating the
impact of corruption packet loss in Figure 3 and discuss below the
tradeoffs involved in previous approaches.

Why can’t we simply disable/avoid the faulty links? The
current state-of-the-art approach to deal with corrupting links is
indeed to disable or avoid them [56, 61]. Doing so, however, reduces
network capacity, and therefore links can only be disabled as long
as the capacity constraints of the network are not violated.

Network capacity constraints are specified as the minimum num-
ber of valley-free paths from a top-of-rack (ToR) switch to the
highest level (spine) of the network [61]. In Figure 4, we show the
configuration for a typical “pod” from Facebook’s state-of-the-art
datacenter fabric network [5], where each ToR switch has 192 (4
fabric switches × 48 uplinks) paths to the spine layer. If the capacity
constraint is 75% and link A starts corrupting packets, it can be
easily disabled and sent for repair as every ToR switch will lose only
1 out of 192 paths to the spine layer. However, if link B also starts
corrupting packets while link A is being repaired (which can take 2
to 4 days), link B cannot be disabled since by doing so switch 1 will

LinkGuardian ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

49 51 52

48 links 48 links 48 links 48 links

4 fabric
switches50

1 2 3 4 5 6 7 8 9 10 ... 48

Link B

Link A

Spine Layer

48 top-of-rack (TOR) switches

Figure 4: A single pod from Facebook’s state-of-the-art data-
center fabric network [5].

lose more than 25% of paths to the spine and violate the capacity
constraint.

A recent study of Microsoft datacenters by Zhuo et al. showed
that under realistic capacity constraints, about 15% of the corrupting
links cannot be disabled [61]. Zhuo et al. hence proposed a solution
called CorrOpt that finds a subset of corrupting links that can be
disabled such that the impact of the remaining corrupting links is
minimized. It is also possible to avoid the corrupting links via source
routing or by using virtual network topologies (e.g. RAIL [62]).
However, again due to capacity constraints, it is not always possible
to avoid the faulty links.

Why not rely on end-to-end recovery? Since there is cur-
rently no way to eliminate corruption losses, recovery is left to the
end-to-end transport protocol (TCP/RDMA) by default. However,
as shown in Figure 2, most flows in datacenters fit within a single
packet and complete within 1 RTT under normal conditions. For
such flows, under 10-3 corruption packet loss rate, we found that
the 99.9th percentile FCTs increase by 66x and 51x when using
RDMA and DCTCP, respectively (see Figure 10 in §4.3). In other
words, when the flows are very short, high-tail FCTs become more
likely since the corrupted packets are more likely to be the “tail”
packets that cause retransmission timeout (RTO).

Using an adaptive RTO [39] with NIC-offloaded [6, 39, 50] and/or
multipath [11] transport stacks as well as explicit probing (RACK-
TLP [12]) can reduce the recovery delay in case of tail packet loss.
However, the fundamental limitation of any end-to-end recovery
is that it cannot completely eliminate the use of RTO to detect
tail packet losses and even the most aggressive RTO cannot be
lowered below 1RTT. Lim et al. proposed a timeout-less design
to handle tail packet loss due to congestion, but it does not help
with corruption [35]. LinkGuardian, on the other hand, does not
employ timeouts and performs corruption loss recovery at sub-RTT
timescales.

End-to-end recovery can also be achieved via end-to-end for-
ward error correction (FEC) [57, 62] or packet duplication [53].
However, this adds encoding/decoding latency and also risks wors-
ening congestion by adding redundant bytes for all the packets
across the entire path. Further, the required decoding at the re-
ceiving end makes it off-limits for supporting one-sided RDMA
operations where no CPU is involved on one end.

Why not use link-local FEC or specialized transceivers?
The Ethernet standards for 25G/100G [25, 26] and 50G/200G/400G [27,
28] specify optional and compulsory FEC at the PHY layer respec-
tively. However, the redundancy parameters are fixed in the cur-
rent standards and cannot be adjusted according to the loss rate.
To investigate the effectiveness of Ethernet FEC, we followed the
methodology proposed by Zhuo et al. [62] to add a configurable

Table 1: Corruption loss rates observed in Microsoft Datacen-
ters [61].

Loss Bucket % Links

[10−8 , 10−5) 47.23%
[10−5 , 10−4) 18.43%
[10−4 , 10−3) 21.66%
[10−3+) 12.67%

Total 100%

optical attenuation on an OM4 grade fiber using a Variable Optical
Attenuator (VOA). We then measured the packet loss rates using
pairs of three different transceivers – 10GBASE-SR [17], 25GBASE-
SR (with and without FEC) [16], and 50GBASE-SR [18]. As shown
in Figure 1, the state-of-the-art 50GBASE-SR suffers significantly
from optical attenuation even with FEC. The trends in Figure 1
suggest that as link speeds are increasing using higher baudrate
and denser modulation, the effectiveness of Ethernet’s built-in FEC
is diminishing. It is possible that future Ethernet standards could
include a runtime configurable adaptive FEC. However, to the best
of our knowledge, currently, there is no hardware support to do
so at 100’s of Gbps link speeds. Besides, FEC leads to increased
per-hop latency for all the packets including those that are not
affected by corruption [49].

Wharf [20] uses link-local FEC at the level of an Ethernet frame
(L2). Its main drawback is that the redundancy is added to all the
packets even when the corruption loss rates are very small (see
Table 1). Furthermore, it performs meter-based packet dropping
to signal reduced link capacity which may not work well with
delay-based transports [32, 38] and most definitely will not work
well with loss-sensitive RDMA. Wharf requires FPGA support on
switches, and it is unclear if the expensive frame-level FEC encod-
ing/decoding can scale to higher link speeds (>=100G).

RADWAN [51] uses bandwidth variable transceivers (BVTs) to
dynamically reduce/adapt the modulation rate (PHY link speed)
for WAN links based on the optical attenuation. While Figure 1
suggests that such an approach could work for intra-datacenter
optical links, BVTs are currently not used for intra-datacenter links
as they are much more bulky and expensive compared to the small
form-factor pluggable (SFP) optical transceivers.

Has anyone else tried link-local retransmission in datacen-
ters? For Infiniband networks, LLR [41] is an NVIDIA proprietary
feature that breaks an Infiniband L2 datastream into “cells” and
performs cell-level retransmission for links that are not longer than
30m. For Ethernet networks, SQR [45] performs link-local retrans-
mission to recover packet loss during fail-stop link failures, but it
does not work for corrupting links. LinkGuardian hence represents
a new and unexplored point in the solution design space for han-
dling packet corruption in (Ethernet-based) datacenter networks.

Our prior workshop paper [30] investigated the potential of this
general idea by implementing out-of-order retransmission within
the TCP’s reordering window of 3 packets on 10G links. In this
paper, we build upon that work to show that out-of-order retrans-
mission outside the TCP’s reorderingwindow can still be effective at
100G speeds. Furthermore, our prior work was a work-in-progress
and it did not describe a complete solution that: (i) completely
masks the corruption packet loss with in-order retransmission (and
is hence amenable to RDMA); (ii) handles tail packet loss; (iii) han-
dles consecutive packet loss; (iv) works at high link speeds; and (v)

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Joshi et al.

can be deployed effectively on a large-scale network. Therefore, to
the best of our knowledge, LinkGuardian is the first complete solu-
tion for mitigating corruption packet loss in datacenter networks
using link-local retransmission.

3 LINKGUARDIAN
The corruption loss rates in real-world datacenters tend to be small
(see Table 1). This makes it possible for LinkGuardian to mitigate
the impact of corruption packet loss using link-local retransmission.
To detect link corruption, we use a low-cost control plane scheme
(called corruptd) that continuously monitors all optical links in the
network (see Appendix C) and activates LinkGuardian once a link is
found to be corrupting packets. Until it is activated, LinkGuardian
lies dormant and imposes no cost on the network.

In this section, we provide an overview of LinkGuardian’s design
by describing a basic link-local retransmission (LL-ReTx) scheme,
the challenges of implementing LL-ReTx at line rates, and, finally,
the key ideas that make LL-ReTx practical in the context of data-
center networks.

Basic LL-ReTx. LinkGuardian can be modeled as a protocol1
running between a “sender” switch and a “receiver” switch (see
Figure 5). The sender adds a monotonically increasing sequence
number (seqNo) to the transmitted packets and buffers a copy of the
recently sent packets (in the Tx buffer). These sequence numbers
are used by the receiver to detect corruption packet losses. When
there is no packet loss (seqNo 1-2), the receiver piggybacks the
cumulative ACK information on top of reverse direction traffic
(Ack2). The sender then drops the buffered copies of successfully
delivered packets (seqNo 1-2). In case of a corruption packet loss
(seqNo 3 in Figure 5), the receiver detects the gap in the sequence
numbers when it receives the subsequent packet (seqNo 4). The
receiver then sends a high-priority loss notification to the sender
(Lost3) and the sender retransmits the packet with seqNo 3 using a
high priority queue.We provide further details on the basic LL-ReTx
protocol in Appendix A.

Challenges. While this basic LL-ReTx scheme is sufficient to
achieve LL-ReTx, it is not practical in a datacenter because of the
following reasons:
(1) Small buffers: Since the switches in datacenter networks have

shallow buffers, the sender needs to receive the ACKs quickly
so that it can drop the buffered packets fast enough to keep
the Tx buffer usage small. If we piggyback the ACKs naively,
they could get delayed by an arbitrary amount depending on
the reverse direction traffic.

(2) Short flows: Since most datacenter flows are short (see Fig-
ure 2), mostly 1 packet, it is not always possible to detect the
loss of such packets based on the gap in the sequence numbers.
In Figure 5, if the packet with seqNo 5 belonging to a short flow
is lost, then the basic LL-ReTx scheme cannot detect the same
until a subsequent packet (seqNo 6) is transmitted. This can
lead to high-tail FCTs.

(3) RDMAflows:The use of RDMA in datacenters networks is now
becoming increasingly commonplace [19, 21, 37, 60]. Compared
to TCP, RDMA performance is very sensitive to packet ordering

1Note that the protocol runs per link (per port) rather than per flow.

3

1234

1234
Loss NotificationsReTx pkts

Tx Buffer

Normal pkts Normal pkts

Sender Switch Receiver Switch

Dummy pkt M

M = Egress Mirroring

4
Rx Buffer

ACK pktM

Decreasing
Strict Priority

Decreasing
Strict Priority

5 M
Lost3

Ack2

12

3= LinkGuardian
Key Idea

Figure 5: LinkGuardian Design Overview.

due to the lack of a “reordering window” [22]. The basic LL-
ReTx above does not preserve the original packet ordering e.g.
when seqNo 3 is lost in Figure 5.
LinkGuardian incorporates three key ideas on top of the basic

LL-ReTx scheme to address these challenges and make it practical
in datacenter networks:
(1) Self-replenishing queue ofACKpackets (§3.1): LinkGuardian

implements a strictly low-priority queue with one ACK packet
at the receiver switch (1 in Figure 5). This means that there
will always be packets in the reverse direction even when there
is no reverse direction traffic to piggyback the ACKs.

(2) Self-replenishing queue of dummy packets (§3.2): Link-
Guardian also implements a similar strictly low-priority queue
of dummy packets at the sender switch (2 in Figure 5). The
dummy packets get sent out as soon as there is no regular traffic
to allow the receiver to quickly detect tail packet losses (e.g.
seqNo 5 in Figure 5).

(3) Reordering Buffer without Overflow (§3.3): To preserve
packet ordering, LinkGuardian implements a reordering buffer
on the receiver (3 in Figure 5). A naive design would result in
buffer overflow at today’s datacenter link speeds. To prevent
this, we use a backpressure algorithm to throttle the sender
when necessary.
Scope and assumptions. Our goal is not to completely elimi-

nate corruption packet loss because it is too costly to achieve such
a guarantee. Instead, we focus on the more modest goal of reducing
the corruption packet loss rate to an operator-specified target level.
To achieve the target effective loss rate, LinkGuardian also handles
the case that the retransmitted copy of the packets could get lost
too (§3.4). For the following sections, we assume that a corrupting
link corrupts packets only in one direction which is the case with
91.8% of corrupting links in production [61]. However, we should
highlight that handling bidirectional corruption would require only
minor modifications which we describe in §5.

Operation modes. LinkGuardian in its default mode preserves
packet ordering. However, we also allow running LinkGuardian
in a simple mode called LinkGuardianNB, where we disable the
mechanism that maintains packet ordering. Our results in §4.3 show
that LinkGuardianNB is effective in mitigating corruption packet
loss for short TCP flows because of the small flow sizes as well as
TCP’s support for reordering window and selective recovery.

3.1 Fast ACKs to prevent buffer overflow
When there are no corruption losses, the sender uses the ACK
information from the receiver to clear its buffer by dropping the
buffered packets that were successfully received. Therefore, the
receiver must send the ACK information as soon as possible to
keep the Tx buffer overhead low. While this can be achieved by
maintaining a continuous stream of ACK packets, it would add

LinkGuardian ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Algorithm 1: De-Duplication & In-Order Recovery
Apply to: protected, protected-reTx, recirculating rx-buffered pkts

1 if pkt.seq_no == ackNo then
2 forward();
3 ackNo = ackNo + 1;
4 else if pkt.seq_no > ackNo then
5 mark_pkt_as_rx_buffered();
6 recirculate(); // will be subjected to the algo again

7 else if pkt.seq_no < ackNo then
8 drop(); // de-duplication

significant overhead in the reverse direction. The overhead can
be minimized by piggybacking the ACK information on regular
packets, but this can cause the ACK signal to be delayed when there
is no traffic in the reverse direction.

To address this problem, we introduce a novel self-replenishing
ACK packet queue that has a strictly lower priority compared to
the normal packet queue at the receiver (see Figure 5). The ACK
packet queue is initialized with a single minimum-sized explicit
ACK packet which will be sent as soon as the normal packet queue
is empty. When the normal packet queue is not empty, the ACK
information would be piggybacked on a normal packet. In addition,
every time an explicit ACK packet is sent, we replenish the queue
by adding a new explicit ACK packet back to the same queue using
egress mirroring.

3.2 Detecting Tail Losses for Single-Packet
Flows

Single-packet flows are common in datacenters [7, 34, 37, 47, 52].
Since losses can only be detected at the receiver from the gap in the
sequence numbers, when the last packet before a short break in the
transmission is corrupted and lost, the receiver would not detect
the loss until the packet transmission resumes. The most common
approach to detect such tail losses is to employ retransmission
timeouts [48]. However, in order to avoid spurious retransmissions,
retransmission timeouts are required to be set conservatively con-
sidering worst-case delays [35]. To eliminate the need for a timeout,
we add another self-replenishing queue at the sender with a sin-
gle “dummy” packet that has a strictly lower priority compared to
the normal packet queue (see Figure 5). Each time when the nor-
mal packet queue at the sender is empty, the “dummy” packet will
be transmitted and the gap in sequence numbers can be detected
immediately at the receiver.

3.3 Reordering Buffer without Overflow
To preserve packet ordering after a corruption loss is detected, the
receiver will need to buffer the subsequent out-of-order packets
until the retransmission is received from the sender switch. We
implement this buffering by using a recirculation port queue as the
“reordering buffer” (Rx Buffer in Figure 5). Packets received after
the lost packet are buffered using recirculation, and this means
that we need a way to ensure that the packets are forwarded in
the right order after the lost packet is received from the sender.
Furthermore, if extra copies of the retransmitted packet were to be
received (§3.4), the extra copies need to be dropped (de-duplication).
We achieve this by using a single state variable called ackNo which
determines the correct next packet to be forwarded ahead. The

Algorithm 2: Backpressure Mechanism
Input: curr_qdepth; // recirculation port’s queue size

Initialization: curr_state = resume;
1 if curr_qdepth >= pauseThreshold && curr_state == resume then
2 send_pause();
3 curr_state = pause;
4 else if curr_qdepth <= resumeThreshold && curr_state == pause then
5 send_resume();
6 curr_state = resume;

1 MTU

tflight_resume

resumeThresholdpauseThreshold

effective
link speed

traffic rate from
corrupting link

Figure 6: Logical view of receiver-side reordering buffer (re-
circulation port queue).
(protected) packets from the sender as well as the receiver-buffered
packets are continuously checked against the ackNo and sent back
into the recirculation queue until it is their turn to be forwarded.
The pseudo-code for this is shown in Algorithm 1.

Since each retransmission takes a small but non-negligible delay,
the reordering buffer will keep filling up with each packet loss if
the subsequent packets continue to arrive at line rate, and even-
tually, the reordering buffer would overflow. To prevent this, we
employ a backpressure mechanism where the receiver switch sends
pause/resumemessages to the sender switch.We only pause/resume
the normal packet queue on the sender switch (see Figure 5) so as
to not affect the retransmission of the lost packets. The underlying
principle is that we want to pause the transmission of the normal
packet queue on the sender just enough to keep the reordering
buffer usage on the receiver switch to a small non-zero value which
we set as 2MTU (see Figure 6).

We note that after the receiver decides to send a resume mes-
sage, there is a short delay called tflight_resume before the normal
packet queue on the sender is resumed. The resumeThreshold is
therefore set to a value such that during the tflight_resume time,
the reordering buffer will not be fully emptied (see Figure 6). Since
the thresholds in our backpressure mechanism are similar in spirit
to the PFC-based backpressure, we follow DCQCN’s recommenda-
tion [60] to set the pauseThreshold by leaving 2MTU worth of
space as hysteresis (see Figure 6). The overall backpressure mecha-
nism is described in Algorithm 2. Essentially, a pausemessage is sent
when the buffer level reaches the pauseThreshold; and a resume
message is sent when the buffer falls below the resumeThreshold.
Since Algorithm 2 operates on a per-packet basis, we use a flag
curr_state to avoid sending redundant pause/resume messages.

We note that LinkGuardian’s backpressure mechanism is not
always activated because datacenter link utilization is typically
low – less than 30% for ∼85% of time [58]. It is activated only if
a corruption packet loss occurs during a high (>90%) utilization
burst which lasts long enough for the reordering buffer to build up
to the pauseThreshold.

3.4 Mitigating Potential ReTx Losses
If the link corruption rate is high, it is plausible that a retransmitted
packet might also be lost. Therefore, to improve the odds of a suc-
cessful retransmission, the sender retransmits not one, but multiple
(𝑁) copies of a buffered packet in response to a loss notification.

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Joshi et al.

Since the original packet was already transmitted (and lost), the
total number of copies transmitted for the lost packet would be
𝑁 + 1, giving us an effective loss rate of (𝑎𝑐𝑡𝑢𝑎𝑙_𝑙𝑜𝑠𝑠_𝑟𝑎𝑡𝑒) (𝑁+1) .
Since our goal is not to completely eliminate corruption packet
losses but to reduce the effective loss rate to an operator-specified
target level, we have the following relation:

(𝑎𝑐𝑡𝑢𝑎𝑙_𝑙𝑜𝑠𝑠_𝑟𝑎𝑡𝑒) (𝑁+1) <= (𝑡𝑎𝑟𝑔𝑒𝑡_𝑙𝑜𝑠𝑠_𝑟𝑎𝑡𝑒) (1)
For example, if a target loss rate of 10-8 is desired by a network
operator and the actual loss rate on a corrupting link is 10-4, then
retransmitting a single copy of the buffered packet (𝑁 = 1) would
suffice to achieve an effective loss rate of 10-8. Now, solving Equa-
tion 1, we get the number of retransmitted copies (𝑁) as:

𝑁 =>
𝑙𝑜𝑔10 (𝑡𝑎𝑟𝑔𝑒𝑡_𝑙𝑜𝑠𝑠_𝑟𝑎𝑡𝑒)
𝑙𝑜𝑔10 (𝑎𝑐𝑡𝑢𝑎𝑙_𝑙𝑜𝑠𝑠_𝑟𝑎𝑡𝑒)

− 1 (2)

Since 𝑁 is an integer in practice, we assign 𝑁 the next integer
value by doing a 𝑐𝑒𝑖𝑙 on the RHS term of Equation 2. Also, note that
since the loss rates are typically very low (Table 1), this strategy to
retransmit multiple copies adds a very small overhead.

3.5 Implementation Details
LinkGuardian is implemented on an Intel Tofino programmable
switch in about 1,800 lines of P4 code and runs entirely in the dat-
aplane. For each packet to be protected, the sender switch adds
a 3-byte LinkGuardian data header, consisting of a 16-bit seqNo
and other metadata: the seqNo era and the packet type (original or
retransmitted). To piggyback the ACK information on the reverse
direction traffic, the receiver switch adds a similar 3 byte Link-
Guardian ACK header. During bootstrapping, the self-replenishing
queues of the dummy and the ACK packets are initialized by in-
jecting a single minimum-sized packet from the switch control
plane. All the state variables are maintained on a per-port basis
using SRAM-based register memory. By default, LinkGuardian pre-
serves ordering (§3.3) and provides a runtime option to switch to
the non-blocking mode (LinkGuardianNB) where ordering is not
preserved.

Backpressuring the normal packet queue.The normal packet
queue on the sender switch can be paused or resumed (§3.3) using
Tofino2’s advanced flow control primitives [33]. However, since
our current implementation is on Tofino, we use PFC pause/resume
frames. Specifically, the receiver switch generates PFC pause/resume
frames as dictated by Algorithm 2, which are then absorbed and
processed by the RX MAC of the corrupting link on the sender
switch. We note that such an implementation does not risk a PFC
storm or deadlock since the normal packet queue on the sender
switch does not further generate any PFC pause/resume frames.

Handling seqNoWrap-around.Wehandle seqNowrap-around
by including an additional “era bit” along with the sequence num-
ber which toggles between 0 and 1 each time the sequence number
wraps around. We perform an “era correction” when comparing
two sequence numbers belonging to different eras, where we sub-
tract a constant N/2 from both the sequence numbers (N is the
sequence number range). This works correctly as long as the two
different-era sequence numbers are not more than N/2 apart.

Handling consecutive packet losses. To decide which packets
to retransmit, the sender switch maintains a lookup table reTxReqs
which is updated by the receiver (details in Appendix A.1). When

consecutive packets are lost, multiple entries in reTxReqs need
to be updated simultaneously by the loss notification packet. If
reTxReqs is implemented as a single register, such a simultaneous
update is not possible due to hardware limitations. Therefore, we
implement reTxReqs across multiple 1-bit registers (details omitted
for brevity) where the number of registers required is equal to the
maximum number of consecutive packets lost. In our current imple-
mentation, we provision 5 1-bit registers (across 2 pipeline stages)
which based on our measurement results (details in Appendix B.2)
can handle 99.9999% of corruption loss events at an unreasonably
high packet loss rate of 5%.

Preventing transmission stalls. In spite of our best efforts,
there is still a small but non-zero probability that a retransmission
will not be successful. Because we buffer packets at the receiver
until the retransmission for the missing packet is received, this
could stall the transmission indefinitely and cause the reordering
buffer to overflow. To handle this rare but potentially fatal event, we
implement a timeout called ackNoTimeout at the receiver. If a re-
transmission does not occur within the timeout period, the receiver
ignores the lost packet, increments the ackNo, and continues with
the remaining packet transmissions. The ackNoTimeout is set to a
value greater than the maximum expected delay in receiving the
retransmission after a packet has been found to be lost (details in
Appendix B.1). To update the ackNo at the receiver when there is an
ACK timeout (see §3.3), we use periodic packets from the switch’s
packet generator for timekeeping [31]. In our implementation, we
set the rate of these timer packets to 10Mpps (∼1% of the switch’s
pipeline processing capacity).

Packet Generation. To create multiple copies of a buffered
packet during retransmission (in case of a high loss rate), the sender
switch uses the multicast primitive. Upon detecting a loss, the re-
ceiver switch uses ingress mirroring to generate the loss notifica-
tions. Whenever PFC pause/resume packets need to be sent by the
receiver, we modify the timer packets and send them to the sender
switch.

3.6 Repairing Corrupting Links in Practice
Recall that LinkGuardian is activated on a link only when the link
is found to be corrupting packets (§3). However, if we only enable
LinkGuardian and do nothing to repair the corrupting links, then
over a long period of time (∼1-2 years), we might end up having
LinkGuardian activated on themajority of links in a large datacenter
network. Therefore, as a long-term strategy for maintaining the
network, periodically, we will need to bring down the corrupting
links so that they can be repaired.

A simple way to do this is to run an algorithm like CorrOpt [61]
to safely schedule LinkGuardian-enabled links for repair without
violating capacity constraints. In particular, when a link starts cor-
rupting packets, we immediately enable LinkGuardian on it to
reduce the effective loss rate to an acceptable rate. Then we run
CorrOpt’s fast checker algorithm to check if the link can be safely
disabled and scheduled for repair. If so, we disable the link and
schedule for repair. Otherwise, the link continues to operate with
corruption while LinkGuardian mitigates the impact on application
performance. As links get enabled again after their repair is com-
plete, we run CorrOpt’s optimizer algorithm to see if any of the

LinkGuardian ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

h7
h8

sw6

sw10

h5
h6

sw5

sw9

h3
h4

sw4

sw8

h1
h2

sw3

sw7

sw2sw1 VOA
A B

C

D

Figure 7: Testbed w/ Variable Optical Attenuator (VOA).

LinkGuardian-enabled corrupting links can be safely disabled and
scheduled for repair. What this joint strategy also demonstrates
is that instead of being in competition with previously proposed
algorithms, LinkGuardian is complementary to them.

4 EVALUATION
In this section, we present our evaluation results for LinkGuardian
(LG) and its out-of-order recovery variant LinkGuardianNB (LG_NB).
In particular, we seek to answer the following questions:
(1) How effective is LinkGuardian at masking the corruption packet

losses? Are we able to reduce the effective loss rate to the
operator-specified target as desired? And what is the corre-
sponding reduction in link speed? (§4.1)

(2) How does LinkGuardian interact with the end-point transport
protocols? (§4.2)

(3) How well does LinkGuardian handle tail packet loss and im-
prove FCTs for short and single-packet flows? (§4.3, §4.4)

(4) How do the various mechanisms of LinkGuardian contribute to
its good performance? (§4.5)

(5) How much buffering do we need and what are the associated
overheads and costs of deploying LinkGuardian? (§4.6)

(6) Howdoes LinkGuardian’s performance comparewithWharf [20],
the state-of-art link-local FEC solution? (§4.7)

(7) When deployed in a large-scale network, how effective is Link-
Guardian in reducing the corruption packet loss and improving
the overall network capacity? (§4.8)
Testbed Setup. We use the testbed setup shown in Figure 7,

where sw2 and sw6 are connected by an OM4 grade fiber optical
fiber link. Depending on the experiment, links are either all 25G or
all 100G. sw2 and sw6 act as the LinkGuardian sender and receiver
respectively and we restrict their recirculation buffers to 200KB.
Following the methodology used in [62], we introduce corruption
packet loss on the link between sw2 and sw6 using a VOA. We set
LinkGuardian’s target loss rate2 to 10-8 and the number of retrans-
mitted packet copies is then determined by Equation 2 depending
on the actual loss rate.

Using the switch control plane, we poll the port counters for
ports denoted by A, B, C and D in Figure 7. These counters enable
us to measure the sending rate/throughput of an endpoint sender,
the actual loss rate incurred due to the VOA, and the effective loss
rate and link speed achieved by LinkGuardian. Before starting an
experiment, we measure the actual loss rate by sending 1B MTU-
sized packets across the corrupting link and checking the difference
between counters B and C. We also poll the queue occupancies on
sw2 and sw6 using the local control plane.

The servers are equipped with Intel Xeon Silver/Gold CPUs,
128GB memory, NVIDIA CX5 and CX6-DX NICs (25G/100G), and

2For MTU-sized packets, a loss rate of 10-8 corresponds to a bit error rate (BER) of
10-12 which is considered a healthy/non-corrupting link [62].

10-11

10-10

10-9

10-8

10-7

25G

E
ff

e
ct

iv
e
 L

o
ss

R
a
te

 90
 92
 94
 96
 98

 100

10-5 10-4 10-3

25G

E
ff

e
ct

iv
e
 L

in
k

S
p
e
e
d
 (

%
)

Actual Loss Rate

100G

10-5 10-4 10-3

100G

Actual Loss Rate

LG_NB LG

Figure 8: Effective loss rates achieved by LinkGuardian (LG)
and LinkGuardianNB (LG_NB) and the effective link speeds.

run Linux kernel 5.4.0-91-lowlatency on Ubuntu 20.04.3. For our
experiments, we use kernel-based DCTCP and NIC-based RoCEv2
(RDMA) transports. For TCP, TSO, SACK, RACK-TLP, and ECN
(100 KB marking threshold [14]) are enabled and 𝑅𝑇𝑂𝑚𝑖𝑛 is set to
1ms. The network RTT for a TCP sender is ∼30 `s. For RoCEv2, we
use a one-sided RDMA_WRITE operation using NIC-based reliable
delivery (RC [42]) which we found to have a 𝑅𝑇𝑂 of ∼1ms.

Parameters. LinkGuardian uses 3 parameters: ackNoTimeout,
resumeThreshold, and pauseThreshold. As discussed in §3.5, we
set the ackNoTimeout to 7.5 `s and 7 `s as we found the maximum
retransmission delays to be 6 `s and 5.5 `s for 25G and 100G links
respectively. For the resumeThreshold (§3.3 and Figure 6), we
measured themaximum tflight_resume values to be 1.9 `s and 1.6 `s
for 25G and 100G links respectively. Therefore, we conservatively
set the resumeThreshold at 40 KB and 37KB for 25G and 100G
links respectively as the recirculation-based buffer drains at 100G.
Since we use a fixed hysteresis of 2MTU, the pauseThreshold is
resumeThreshold + 2MTU.We provide more details on parameter
tuning in Appendix B.1.

4.1 Effective Loss Rate & Link Speed
Using the packet generator on sw2 (see Figure 7), we conduct a
“stress test” by sending MTU-sized packets at line rate and evaluate
LinkGuardian using three representative loss rates observed in
production (see Table 1): 10-5, 10-4, and 10-3. As prescribed by
Equation 2, LinkGuardian retransmits 1, 1, and 2 copies for each lost
packet for these loss rates, respectively. This should theoretically
result in loss rates of 10-10, 10-8, and 10-9, respectively. In Figure 8,
we plot the observed (effective) loss rates achieved by LinkGuardian
and the corresponding effective link speeds for 25GBASE-SR and
100GBASE-SR4 links. We observe that, except for the 25G link with
10-3 loss rate, the effective loss rates for both LinkGuardian and
LinkGuardianNB closely match the theoretically expected loss rates.
For the 25G link at the 10-3 loss rate, our investigations showed that
the corruption losses are not independent and identically distributed
(i.i.d.) and we suspect that this is the reason why the effective
loss rate deviates from the theoretically expected loss rate of 10-9.
However, it is still very close to the target loss rate of 10-8.

For effective link speed, we see that LinkGuardianNB scales
much better to higher link speeds and higher loss rates compared
to LinkGuardian while achieving similar effective loss rates. This is
because, unlike LinkGuardian, LinkGuardianNB does not preserve
packet ordering and therefore does not incur intermittent pauses
in the link transmission. Nevertheless, for a 100G link with a high

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Joshi et al.

24

24.5

25

4
5
6
7

Ra
te

 (
G

bp
s)

sendrate

0
50

100
150

B
u�

er
 (

KB
) qdepth

LinkGuardian Rx buffer

0
30
60

0 2 4 6 8 10 12 14

#
.P

kt
s

Time (seconds)

End-to-End ReTx

DCTCP ECN Threshold (100KB)

Corruption (10-3)
starts! LinkGuardian

starts!

effective link speed (24.6Gbps)

(a) LinkGuardian.

0
5

10
15
20
25

Ra
te

 (
G

bp
s)

sendrate

0
50

100
150
200
250

B
u�

er
 (

KB
) qdepth

LinkGuardian Rx buffer

0
300
600
900

0 2 4 6 8 10 12 14

#
.P

kt
s

Time (seconds)

End-to-End ReTx

Corruption (10-3)
starts!

DCTCP ECN Threshold (100KB)

effective link speed (24.6Gbps)

LinkGuardian
starts!

(b) LinkGuardian with backpressure mechanism disabled.

Figure 9: Performance of LinkGuardian for DCTCP on a 25G
link with 10-3 loss.

actual loss rate of 10-3, LinkGuardian can reduce the loss rate by
up to 6 orders of magnitude while incurring only an 8% reduction
in the link’s effective link speed while preserving packet ordering.

Timeouts in practice. Recall from §3.5 that when LinkGuardian
preserves ordering, it implements an ackNoTimeout which is trig-
gered when LinkGuardian fails to recover a lost packet i.e. when
all the retransmitted copies are lost. We used a simple counter on
the receiver switch to measure the total number of timeouts across
all the LinkGuardian (LG) experiments in Figure 8. We found that
for all the packet loss events (∼31M), only 476 (0.0016%) of them
had timeouts. This confirms that the ackNoTimeout is merely a
fallback mechanism that occurs rarely in practice.

4.2 Impact on Transport Protocols
Our high-level goal is to mask the corruption packet losses from
the transport layer. While we showed in §4.1 that LinkGuardian
can reduce the effective loss rates, what matters is the net impact
on transport protocols. To understand the impact of LinkGuardian,
we send single flow TCP traffic from h4 to h8 using iperf with all
links set to 25G. We evaluate three different TCP variants: CUBIC,
DCTCP, and BBR, as they use congestion loss, ECN, and delay as
congestion signals respectively. We consider BBR to be representa-
tive of delay-based transport protocols since the implementations
for TIMELY [38] and Swift [32] are not readily available.

In each experiment, we start the setup with no corruption loss.
At the 2-second mark, we introduce a loss rate of 10-3 on the link,
and approximately 5 seconds later, we enable LinkGuardian. We
plot the results for DCTCP in Figure 9a. The effective link speed in
the figure is measured separately by sending a line rate UDP flow
under the same experiment conditions. We see that the throughput

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 10 100 1000 10000

51X

C
D

F

Message/Flow Completion Time (µs)

DCTCP (No loss)
DCTCP + LG (10-3 loss)

DCTCP + LG_NB (10-3 loss)
DCTCP (10-3 loss)

(a) DCTCP.

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 10 100 1000 10000

66X

C
D

F

Message/Flow Completion Time (µs)

RDMA_WR (No loss)
RDMA_WR + LG (10-3 loss)

RDMA_WR + LG_NB (10-3 loss)
RDMA_WR (10-3 loss)

(b) RDMAWRITE

Figure 10: Top 1% FCTs for 143B flows on a 100G link.

is reduced sharply once corruption losses are introduced. Upon
enabling LinkGuardian, the corruption losses are eliminated and
the throughput returns to a level comparable to the effective link
speed. We also notice that the slightly lower effective link speed
leads to a build-up in the flow’s buffer at the sender switch (shown
as “qdepth”) triggering ECN marking. This result also demonstrates
that since LinkGuardian only deals with packets transmitted on the
link, it works well even if the link has congestion. Overall, we see
that LinkGuardian’s backpressuremechanism is effective at keeping
its receiver-side buffer occupancy (labeled as “Rx buffer”) low. We
observe similar results with CUBIC and BBR (see Appendix B.3).

Backpressure Not Considered Optional. In Figure 9b, we also
plot the results when the backpressure mechanism is disabled. We
now see a large number of end-to-end retransmissions because the
reordering buffer (Rx buffer) periodically builds up and overflows.
In fact, the observed packet losses after enabling LinkGuardian
are so severe that the random corruption packet losses in the pe-
riod between 2 and 8 seconds are barely visible in Figure 9b. The
throughput is also lower compared to the earlier results shown
in Figure 9a. In other words, the backpressure mechanism is criti-
cal for ensuring that the buffering at the receiver switch works as
intended.

4.3 Tail Packet Loss and Short Flows
One-packet Flows. To evaluate how effectively LinkGuardian han-
dles tail packet losses, we measure the FCT of 143 B DCTCP and
RDMA write (RDMA_WR) flows (300K trials) in our testbed with
all links set to 100G while introducing a corruption loss rate of
∼10-3. 143 B is the most frequent flow size in the Google all RPC
workload [52]. It is clear from our results in Figure 10 that both
LinkGuardian and LinkGuardianNB are able to mask the corrup-
tion losses so effectively that the performance at 10-3 loss rate
becomes indistinguishable from the case when the link is lossless.
LinkGuardian and LinkGuardianNB achieve the same performance
since we do not need to worry about ordering in case of single
packet flows. We note that the result in Figure 10 is also representa-
tive of all other flow sizes for workloads in Figure 2 that fit within
a single packet.

Multi-packet Flows. Next, we repeat the experiment with
24,387 B-sized flows which is the most frequent flow size in the

LinkGuardian ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

 0.95
 0.96
 0.97
 0.98
 0.99

 1

 10 100 1000 10000

C
D

F

Message/Flow Completion Time (µs)

DCTCP (No loss)
DCTCP + LG (10-3 loss)

DCTCP + LG_NB (10-3 loss)
DCTCP (10-3 loss)

(a) DCTCP

 0.95
 0.96
 0.97
 0.98
 0.99

 1

 10 100 1000 10000

C
D

F

Message/Flow Completion Time (µs)

BBR (No loss)
BBR + LG (10-3 loss)

BBR + LG_NB (10-3 loss)
BBR (10-3 loss)

(b) BBR

 0.95
 0.96
 0.97
 0.98
 0.99

 1

 10 100 1000

C
D

F

Message/Flow Completion Time (µs)

RDMA_WR (No loss)
RDMA_WR + LG (10-3 loss)

RDMA_WR + LG_NB (10-3 loss)
RDMA_WR (10-3 loss)

(c) RDMAWRITE
Figure 11: Top 5% FCTs for 24,387B flows (17 packets) on a 100G link.

 0.95
 0.96
 0.97
 0.98
 0.99

 1

 1000 10000

C
D

F

Message/Flow Completion Time (µs)

DCTCP (No loss)
DCTCP + LG (10-3 loss)

DCTCP + LG_NB (10-3 loss)
DCTCP (10-3 loss)

Figure 12: Top 5% FCTs for 2MB DCTCP flows on a 100G Link

DCTCP web search workload [3]. We plot the results when using
DCTCP, BBR, and RDMA_WR transports in Figure 11. We can see
that the lines for LinkGuardian and no loss mostly overlap. While
BBR is mostly agnostic to packet loss, this experiment shows that
corruption packet loss does affect the FCTs of short BBR flows
and therefore mitigating corruption loss is necessary for BBR and
similar rate-based/loss-agnostic transport protocols. In Figure 11,
we also see that for RDMA, LinkGuardianNB provides no improve-
ment over the loss case other than preventing RTO by handling
tail packet losses. This is because RDMA’s NIC-based reliable de-
livery has no reordering tolerance and LinkGuardianNB does not
cause any reordering when it recovers the tail packet loss. On the
other hand, for DCTCP and BBR, LinkGuardianNB performs nearly
as well as LinkGuardian except at very high percentiles (> 99.9th)
where it performs marginally worse.

To evaluate the performance with somewhat longer flows, we
repeat the FCT experiment with 2MB flows which is the maximum
flow size in the Alibaba Storage workload [34]. Figure 12 shows the
results for DCTCP transport. We can see that both LinkGuardian
and LinkGuardianNB perform similarly for 2MB flows as they did
for 24,387B flows (Figure 11a). We expect the results for 2MB flows
while using BBR and RDMA transports to be qualitatively similar to
Figures 11b and 11c, respectively. While not shown in Figure 12, the
solid and dotted black lines start to diverge around 20th percentile
indicating ∼80% flows were affected by packet corruption.

In summary, both LinkGuardian and LinkGuardianNB improve
the 99.9th percentile FCT for single packet DCTCP and RDMA
flows by 51x and 66x respectively. For 24,387B flows, the 99.9th
percentile gains for LinkGuardian are 19x for DCTCP and BBR, and
39x for RDMA. On the other hand, for 2MB DCTCP flows, Link-
Guardian and LinkGuardianNB improve the 99.9th percentile by 4x
and 2x respectively. While LinkGuardianNB performs similarly to
LinkGuardian for multi-packet TCP flows (up to 99th percentile),
it provides little benefit in case of reordering-sensitive RDMA but
does eliminate the long tail FCTs due to RTOs.

4.4 Why does out-of-order recovery work for
TCP?

To understand why LinkGuardianNB works well for TCP, we stud-
ied the packet traces of the 24,387B DCTCP flows that received

(2950) "all affected flows"
SACK'ed Bytes > 2 MSS?

tail loss? pendingTxBytes > 0?

no yes

no yes

(1531)

(1179)
"Grp A"

(352)
"Grp B"

(1419)

no yes

(1079)
"Grp C"

(340)
"Grp D"

Figure 13: Classification of “affected” 24,387B DCTCP flows
with LG_NB. Numbers denote the number of flows (trials).

at least one SACK while LinkGuardianNB performed out-of-order
recovery (Figure 11a). We then classified these affected flows into 4
different groups as shown in Figure 13. The condition “SACK’ed
bytes > 2MSS” refers to the case where a DCTCP sender received
sufficient SACK’ed bytes to reduce in its cwnd [3, 10]. The “tail
loss?” condition refers to the case where a packet was lost (and
recovered by LinkGuardianNB) within the last 3 packets of the flow.
pendingTxBytes refers to the remaining bytes of the flow that a
DCTCP sender is pending to transmit when it received the SACK.

We found that for the flows in group A, LinkGuardianNB was
able to exploit the gaps in packet transmissions (TSO segments) to
retransmit the lost packet within TCP’s reordering window such
that the total SACK’ed bytes were less than 2MSS, and the cwnd
was not reduced. The flows in group C received more than 2MSS
of SACK’ed bytes but only after the DCTCP sender had finished
sending the entire flow. Overall, the flows in groups A and B did not
experience a reduction in cwnd due to ≤ 2MSS SACK’ed bytes while
the flows in group C suffered cwnd reduction but the FCT was not
affected since there was no data remaining to be sent. Only the flows
in group D (a small fraction) experienced somewhat higher FCT
because the flows had pending bytes when they received > 2MSS
SACK’ed bytes. However, we found that the pending bytes were
no more than 7MSS, and therefore the impact on FCT was rather
limited. A similar explanation was found for LinkGuardianNB’s
good performance with 2MB DCTCP flows (Figure 12). However, in
this latter case, the fraction of flows in group D is relatively larger
because of the larger flow size, and there were flowswith∼1.3KMSS
pending bytes which experienced a much higher increase in FCT
leading to the longer tail for LinkGuardianNB in Figure 12.

For BBR, there is no reduction in the sending rate since BBR
is loss-agnostic. However, BBR performance still improves with
LinkGuardianNB by avoiding a 1 RTT delay as well as TCP end-host
stack delays arising from end-to-end recovery.

4.5 Contribution of different mechanisms
To understand the contributions of the different mechanisms imple-
mented by LinkGuardian, we repeat the above experiment (24,387 B)
with a variant of LinkGuardian implementing only link-local re-
transmission (ReTx) and then selectively enable LinkGuardian’s

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Joshi et al.

Table 2: Top 1% FCT (`s) for 24,387B DCTCP flows for dif-
ferent LinkGuardian mechanisms: tail loss handling (“Tail”)
and preserving packet order (“Order”)

No
Loss

Loss
(10-3) ReTx ReTx

+Order
ReTx
+Tail

ReTx+Tail
+Order

99.00% 152.293 169.044 161.959 161.168 156.627 155.669
99.90% 166.877 3399.743 212.378 193.252 195.588 168.21
99.99% 197.536 4036.167 3606.115 3773.866 314.128 194.085
99.999% 253.207 4159.96 4107.404 4088.288 356.503 235.793
std dev 21.3 172.294 63.695 80.148 22.629 22.286

packet order preserving (Order) and tail loss handling (Loss) mech-
anisms. In Table 2, we show the top 1% FCT results for DCTCP.
Simple link-local retransmission improves the 99.9% FCT signifi-
cantly as it recovers the loss of the 3rd last and the 2nd last packets
in the flow which would otherwise cause an RTO due to lack of
3MSS SACKed bytes. Additionally handling packet ordering only
provides marginal gains up to 99.9%. Tail loss handling on the other
hand significantly reduces FCT at all top percentiles. Notice that
the two right-most columns represent LinkGuardianNB and Link-
Guardian respectively, and the additional packet order preserving
by LinkGuardian improves the FCT by ∼33% at 99.99% and above
percentiles thereby nearly matching the performance of the no loss
case. Results for BBR and RDMA (omitted for brevity) show similar
trends except that for RDMA at 99.9%, ReTx+Order shows 3.75x
improvement than ReTx since RDMA is more reordering intolerant
compared to TCP. One may erroneously conclude that tail loss han-
dling only helps for FCTs at 99.99% and above. However, our results
in Figure 10 show that tail loss handling in crucial for single-packet
flows.

We note here that for the loss (10-3) case, performance deficits ex-
ist even though RACK-TLP is enabled in our experiments. While the
exact reason is under investigation, we believe that this is because
for very short flows RACK-TLP does not have a reliable estimate of
the network RTT.

4.6 Overhead
In this section, we present the overhead results corresponding to
the “stress test” experiments in §4.1 where we run continuous line-
rate traffic. These results, therefore, show the “worst case” cost of
running LinkGuardian as real-world link utilization exceeds 90%
only about 10% of the time [58].

Packet Buffer Usage. LinkGuardian requires a packet buffer at
the sender switch (TX buffer) and additionally at the receiver switch
(RX buffer) when packet ordering is to be preserved. We used con-
trol plane APIs to measure the packet buffer usage which we plot
in Figure 14 for 25G and 100G links running at three different loss
rates. The key takeaway from these results is that at 25G, the TX
and RX buffer usage for LinkGuardian is at most 3.6 KB (∼2MTU)
and 60KB respectively for all evaluated loss rates; at 100G, the
TX and RX buffer usage are both at most 90 KB. LinkGuardianNB
requires no RX buffer, while its TX buffer requirement is the same
as LinkGuardian at 25G and about 3x lower (24.4 KB) at 100G. This
is because LinkGuardianNB has no backpressure mechanism that
could potentially delay the ACKs. To put these numbers in con-
text, 100G datacenter switches have 16-42MB of packet buffer [55].
In other words, the required buffering to deploy LinkGuardian is
negligible for modern switches.

 0
 20
 40
 60
 80

 100

10-5 10-4 10-3B
u
ff

e
r

S
iz

e
 (

K
B

)

Loss Rate

TX Buffer RX Buffer TX Buffer (NB)

(a) 25G link speed.

 0
 20
 40
 60
 80

 100

10-5 10-4 10-3B
u
ff

e
r

S
iz

e
 (

K
B

)

Loss Rate

TX Buffer RX Buffer TX Buffer (NB)

(b) 100G link speed.
Figure 14: LinkGuardian’s packet buffer usage for different
link speeds and packet loss rates. Whiskers show min, max,
25th, 50th, 75th percentiles.

Table 3: TCP CUBIC goodput (Gb/s) on a 10G Link
Loss Rate→ 0 10−5 10−4 10−3 10−2
None 9.49 9.48 8.01 3.48 1.46
Wharf n/a 9.13 9.13 9.13 7.91
LinkGuardian 9.47 9.47 9.47 9.46 9.2
LinkGuardianNB 9.47 9.47 9.47 9.46 9.2

Protocol Overhead. LinkGuardian adds a 3-byte header to each
packet in both forward and reverse (ACK) directions. Since the
standard MTU-sized frame is 1,538 octets on wire, this overhead
amounts to a ∼0.2% degradation of link capacity and occurs only
when LinkGuardian is activated. Both the dummy packets and ex-
plicit ACK packets do not add any overheads as they are transmitted
only when there is no regular traffic.

Recirculation Overhead. Across 3 loss rates and 2 link speeds,
we found the worst-case recirculation overhead to be 0.664% of
the switch pipeline’s processing capacity (more details in Appen-
dix B.4). LinkGuardianNB has the same recirculation overhead on
the sender switch but zero on the receiver switch. The key takeaway
is that recirculation takes up less than 1% of the switch pipeline’s
processing capacity, and thus the overhead is negligible for modern
switches.

Dataplane Resources. LinkGuardian needs to maintain state
in the dataplane on a per-port basis and uses stateful ALUs (SALUs)
for stateful operations. With state provisioned for 256 ports, Link-
Guardian requires only ∼9% of the total SRAM memory and uses
∼25% of the available SALUs. We believe that future switches are
likely to incorporate more SALUs, while LinkGuardian will be able
to support higher link speeds without the need for more SALUs.

We note that, except for the dataplane resources, the above over-
heads are per LinkGuardian-enabled link. However, the results from
our large-scale simulation (§4.8) suggest there could be no more
than 2-4 LinkGuardian-enabled links on a switch pipe.

4.7 Comparison with Wharf
Link-local FEC is a natural alternative to link-local retransmis-
sions and therefore we compare LinkGuardian with Wharf [20],
the state-of-the-art link-local FEC scheme. We were not able to
reproduce Wharf’s results experimentally because we did not have
access to the required FPGA hardware. In Table 3, we reproduce
Wharf’s results numerically by picking the Wharf FEC parameters

LinkGuardian ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

10-8
10-6
10-4
10-2
100

To
ta

l
Pe

n
a
lt

y

 40
 50
 60
 70
 80

Capacity Constraint Hit

Le
a
st

 P
a
th

s
p

e
r

To
R

 (
%

)

 94
 95
 96
 97
 98

 0 1 2 3 4 5 6 7Le
a
st

 C
a
p
a
ci

ty
p

e
r

Po
d
 (

%
)

Time (days)
Capacity Constraint: 50%

Capacity Constraint Hit

 0 1 2 3 4 5 6 7

0.22% reduction

Time (days)
Capacity Constraint: 75%

CorrOpt LinkGuardian + CorrOpt

Figure 15: 1-week snapshot of simulation results for FB fabric
topology (100K optical links).

that gave their best-reported goodput for each loss rate (c.f. Fig-
ure 8 in [20]). In our experiments, we used the same experimental
setup as Giesan et al.: 10G link, TCP CUBIC, and Tofino-based ran-
dom packet dropping. Our results show that both LinkGuardian
and LinkGuardianNB compare favorably at all loss rates. For Link-
GuardianNB, we observed that it retransmits within TCP’s reorder-
ing window for the majority of times and thereby prevents the TCP
sender from reducing its cwnd below the network BDP.

4.8 Effectiveness in large-scale deployment
In this section, we use simulation to evaluate the effectiveness of
LinkGuardian when deployed in a large datacenter network. We
use the same methodology that was used to evaluate CorrOpt [61]
and compare vanilla CorrOpt with LinkGuardian + CorrOpt.

Setup. We contacted the authors of CorrOpt [61] for details on
their evaluation setup. However, due to confidentiality reasons, they
were unable to provide us with any traces, source code, or topol-
ogy information. Therefore, we re-implemented their evaluation
methodology in about 3K lines of Python code3. For the topology,
we use the state-of-the-art Facebook fabric [5] (see Figure 4) data-
center network with about 100K switch-to-switch optical links (all
100G) and 1:1 oversubscription ratio4. For link corruption trace, we
implemented a trace generator that uses the corruption loss rate
and link spatial distribution data from Microsoft’s datacenters [61],
and a per-link Weibull distribution with a mean-time-to-failure
(MTTF) of 10K hours [36] (details in Appendix D). When activated,
LinkGuardian performs ordered retransmission and the link’s ef-
fective speed is as per Figure 8. We assume that when sent for
repair, 80% of the corrupting links are repaired in ∼2 days while
the remaining take ∼4 days [61].

Evaluation Metrics. We adopted the following metrics used by
Zhuo et al. to evaluate CorrOpt [61]:
(1) Total penalty: sum of the loss rates for all the active (remain-

ing) corrupting links in the network;
(2) Least paths per ToR: the least fraction of paths to the spine

(top) layer of the network for the worst-case ToR. This metric
captures the impact on per-ToR path diversity as corrupting
links are disabled for repair.

3https://github.com/NUS-SNL/linkguardian-sim
4supports about 500K 10G-connected or 125K 40G-connected servers

 0
 0.2
 0.4
 0.6
 0.8

 1

100 101 102 103 104 105 106

C
D

F

Gain in Total Penalty (x times)

50%
75%

(a)

 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 0 0.05 0.1 0.15 0.2 0.25

C
D

F

Decrease in Least Capacity
per Pod (normalized %)

50%
75%

(b)
Figure 16: CDF of (a) Gain in the total penalty; and (b) De-
crease in least capacity per pod; for LinkGuardian + CorrOpt
compared to vanilla CorrOpt (1 year simulation).

To quantify LinkGuardian’s cost which is the reduction in the link’s
effective capacity, we introduce an additional metric: Least capacity
per pod, that we define as the total capacity in a network pod from
the ToR-layer to the spine (top) layer for the worst-case pod in the
network (see Figure 4).

In Figure 15, we plot a 1-week snapshot of a year-long simulation
result for capacity constraints (defined in §2) of 50% and 75%. We
see that when the capacity constraint (least paths per ToR) is hit,
vanilla CorrOpt fails to disable the corrupting links resulting in
a higher total penalty. Overall, we see that compared to vanilla
CorrOpt, LinkGuardian + CorrOpt reduces the total penalty by
about 6 and 4 orders of magnitude for capacity constraints of 50%
and 75%, respectively.

To investigate the benefits and costs over the entire simulation
period, we plot the CDFs of (a) the gain in total penalty i.e. how
many times the combined solution reduces the total penalty com-
pared to vanilla CorrOpt; and (b) the corresponding cost in terms
of decrease in the least capacity per pod in Figure 16. We can see
that for capacity constraint of 50%, about 35% of the time, there is
no difference in the total penalty (gain = 1) as all corrupting links
are disabled successfully. However, for the remaining 65% of the
time and for nearly all times with 75% capacity constraint, the com-
bined solution offers significant benefits while causing very little
reduction in the per pod’s capacity to the spine layer (Figure 16b).

Overall, our results demonstrate that when augmented with
LinkGuardian, CorrOpt can reduce the total penalty by orders of
magnitude while allowing the network to be operated at higher
capacity constraints, with a minimal reduction in network capacity.

5 DISCUSSION & FUTUREWORK
In this section, we discuss a few corner cases, address the current
implementation constraints with next generation programmable
hardware, and discuss future extensions.

Handling bidirectional corruption. Handling bidirectional
corruption is relatively straightforward by extending LinkGuardian’s
current implementation. First, we increase the reliability of the con-
trol messages in the reverse direction by sending multiple copies.
These messages include loss notifications, explicit ACK packets,
and pause/resume messages. Then it is simply a matter of running
a parallel instance of LinkGuardian in the reverse direction.

Handling multiple corrupting links on the same switch.
In our simulations (§4.8), we observed that in the worst case, there
could be 2 and 4 concurrently LinkGuardian-enabled links per
switch pipeline for capacity constraints of 50% and 75% respec-
tively. Switch pipelines support ∼2 internal recirculation ports per
pipe [40] and more recirculation ports can be added by running any

https://github.com/NUS-SNL/linkguardian-sim

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Joshi et al.

free ports in loopback mode. Nevertheless, how we can use ∼2 recir-
culation ports to buffer packets for >2 LinkGuardian ports remains
to be explored. We believe that this could be plausible as datacenter
link utilization is bursty and not all ports run at 100% utilization
at the same time [58]. Also, since Tofino2 can likely implement re-
transmission without recirculation, Tofino2 can naturally support
multiple corrupting links.

Handling bursty losses. Bursty or consecutive packet losses
can occur on a corrupting link. Therefore, it is possible that the
last (tail) normal packet from the sender switch and the subsequent
dummy packet are both lost (refer Figure 5). In this case, the tail
packet loss would go undetected. LinkGuardian handles this sce-
nario by sending multiple copies of the dummy packet each time
the normal packet queue becomes empty. This ensures that, to de-
tect the tail packet loss, the receiver switch receives the dummy
packet with a high probability. A similar mechanism is used by the
ACK packets when there is corruption in the reverse direction.

Multiple corrupting links on a path. LinkGuardian naturally
handles such a scenario since it operates on each link indepen-
dently. While we could not evaluate this scenario due to the lack
of sufficient optical hardware to introduce corruption on multiple
links, we expect the end-to-end performance to benefit significantly
from LinkGuardian. This is because the baseline loss case would be
even worse as multiple corrupting links on a path would lead to a
greater fraction of the flows suffering corruption packet loss, with
individual flows being more likely to suffer multiple packet losses.

Implementing LinkGuardian with Tofino2. In our measure-
ments (detailed in Appendix B.1), we found that LinkGuardian takes
up to 5.25 `s to recover an MTU-sized (1,538 B on wire) packet on a
100G link. Given that it takes only about ∼123 ns to serialize 1,538
bytes on a 100G link, this delay is surprisingly long. It turns out
that this large delay is an artifact of our current recirculation-based
buffering on the Intel Tofino. Tofino2 [33] offers new advanced flow
control primitives that could be used to pause/unpause as well as
achieve credit-based scheduling of a queue in the dataplane. These
primitives could in theory allow us to implement retransmission
without recirculation, but this thesis remains to be validated.

LinkGuardian vs. LinkGuardianNB. Our results in §4 sug-
gest that LinkGuardianNB is generally more scalable to higher
loss rates and link speeds and incurs fewer overheads compared
to LinkGuardian. While LinkGuardianNB performs comparably to
LinkGuardian for TCP (up to 99th percentile), the difference is more
significant for RDMA’s NIC-based reliable transport. Depending on
the application mix and the desired SLA guarantees, a network op-
erator could do a runtime configuration to run either LinkGuardian
or LinkGuardianNB on a corrupting link. In fact, while currently
not implemented in our prototype, it is reasonably straightforward
to allow both LinkGuardian and LinkGuardianNB to run simulta-
neously on a corrupting link, each protecting a different class of
traffic with different ordering guarantees.

Incremental Deployment. LinkGuardian is suitable for incre-
mental deployment as switches are upgraded over time in a network.
As discussed in §2, not all links are equal, and therefore network
operators can prioritize deploying LinkGuardian for links that can-
not be easily disabled without violating capacity constraints. The

exact partial deployment strategy that yields maximum benefits
remains as future work.

Higher Link Speeds. LinkGuardian is agnostic to the overall
scale of the network as it works locally on the link between adjacent
switches. The question is whether LinkGuardian would continue to
work as link speeds continue to grow. In principle, LinkGuardianNB
would work well for higher link speeds of 400G and above due to
its lower overheads and better scalability. LinkGuardian, on the
other hand, might achieve a proportionally lower effective link
speed and higher buffer overhead if the switch pipeline latency
hugely dominates the retransmission delay. However, we believe
that with a Tofino2-based implementation and further dataplane
optimizations, LinkGuardian should still achieve good performance
with low overheads. We plan to investigate this once the hardware
becomes available to us.

Automatic fallback. LinkGuardian is designed to work for
low loss rates observed in today’s datacenter networks (Table 1).
However, in the rare event of sudden high loss rates, LinkGuardian’s
performance can degrade, especially when the packet ordering is
being preserved. Such scenarios can be handled by extending our
control-plane-based monitoring system (Appendix C) to detect
such situations and automatically fall back to LinkGuardianNB or
completely disable LinkGuardian on the affected corrupting link.

Reordering tolerance in modern transport protocols. Re-
cently, a new feature called the “reordering window adaptation”
was proposed in RFC8985 [12]. Also, RoCEv2’s NIC-based reliable
transport has a new “selective repeat” feature [43] that allows more
efficient selective retransmission than Go-back-N recovery. We
plan to investigate the implication of these new features for Link-
GuardianNB.

6 CONCLUSION
To the best of our knowledge, we are the first to validate that a
combination of simple techniques can make link-local retransmis-
sion practical in modern datacenter networks. We also show that,
for short TCP flows in datacenter networks, simple out-of-order re-
transmission is often sufficient to significantly mitigate the impact
of corruption packet loss. With LinkGuardian, network operators
can work with corrupting links with moderate loss rates (between
10−3 and 10−5) at a marginally reduced link speed and with little
overhead. Since LinkGuardian is amenable to incremental deploy-
ment, deploying LinkGuardian with CorrOpt will allow network
operators to not only reduce the network-wide corruption loss
rate, but also operate networks at higher capacity constraints that
were not previously feasible. Overall, we believe that we have made
a strong case that link-local retransmission is both practical and
effective for modern datacenter networks.

ACKNOWLEDGMENTS
We thank the anonymous SIGCOMM reviewers for their valuable
feedback and Danyang Zhuo for answering our relentless questions
regarding CorrOpt [61]. This work was supported by the Singa-
pore Ministry of Education Academic Research Fund Tier 1 (T1
251RES1917) and Tier 2 (MOE2019-T2-2-134).
Ethics statement: This work does not raise any ethical issues.

LinkGuardian ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

REFERENCES
[1] 3GPP. 2007. TS 36.321: E-UTRA; Medium Access Protocol Specification (Release

8). (2007).
[2] 3GPP. 2020. TS 36.321: LTE; E-UTRA; Medium Access Protocol Specification

(Release 16). (2020).
[3] MohammadAlizadeh, Albert Greenberg, David AMaltz, Jitendra Padhye, Parveen

Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010. Data
Center TCP (DCTCP). In Proceedings of SIGCOMM.

[4] Mark Allman, Vern Paxson, and Ethan Blanton. 2009. TCP Congestion Control.
RFC 5681 (2009).

[5] Alexey Andreyev. 2014. Introducing data center fabric, the next-generation Face-
book data center network. https://engineering.fb.com/2014/11/14/production-
engineering/introducing-data-center-fabric-the-next-generation-facebook-
data-center-network/.

[6] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer Rexford,
David Walker, and David Wentzlaff. 2020. Enabling Programmable Transport
Protocols in High-SpeedNICs. In Proceedings of NSDI.

[7] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
2012. Workload analysis of a large-scale key-value store. In Proceedings of SIG-
METRICS.

[8] Hari Balakrishnan, Venkata N. Padmanabhan, Srinivasan Seshan, and Randy H.
Katz. 1996. A Comparison of Mechanisms for Improving TCP Performance over
Wireless Links. In Proceedings of SIGCOMM.

[9] Hari Balakrishnan, Srinivasan Seshan, Elan Amir, and Randy H. Katz. 1995.
Improving TCP/IP Performance over Wireless Networks. In Proceedings of MOBI-
COM.

[10] Ethan Blanton, Mark Allman, Lili Wang, Ilpo Jarvinen, Markku Kojo, and Yoshi-
fumi Nishida. 2012. A conservative loss recovery algorithm based on selective
acknowledgment (SACK) for TCP. RFC 6675 (2012).

[11] Guo Chen, Yuanwei Lu, Yuan Meng, Bojie Li, Kun Tan, Dan Pei, Peng Cheng,
Layong Larry Luo, Yongqiang Xiong, Xiaoliang Wang, et al. 2016. Fast and
cautious: Leveraging multi-path diversity for transport loss recovery in data
centers. In Proceedings of NSDI.

[12] Yuchung Cheng, Neal Cardwell, Nandita Dukkipati, and Priyaranjan Jha. 2021.
The RACK-TLP Loss Detection Algorithm for TCP. RFC 8985 (2021).

[13] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun. ACM 56,
2 (2013).

[14] Linux Networking Documentation. 2022. DCTCP (DataCenter TCP). https:
//www.kernel.org/doc/html/latest/networking/dctcp.html.

[15] Edward John Forrest Jr. 2014. How to Precision Clean All Fiber Optic Connections:
A Step By Step Guide.

[16] fs.com. 2023. EdgeCore ET7302 SR compatible 25GBASE-SR optical transceiver.
https://www.fs.com/sg/products/84279.html?attribute=739&id=393015.

[17] fs.com. 2023. Optical transceiver 10GBASE-SR SFP. https://www.fs.com/sg/
products/11589.html.

[18] fs.com. 2023. Optical transceiver 50GBASE-SR SFP56. https://www.fs.com/sg/
products/146526.html.

[19] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi, Pengcheng Zhang, Wenwen
Peng, Bo Li, Yaohui Wu, Shaozong Liu, Lei Yan, et al. 2021. When Cloud Storage
Meets RDMA. In Proceedings of NSDI.

[20] Hans Giesen, Lei Shi, John Sonchack, Anirudh Chelluri, Nishanth Prabhu, Nik
Sultana, Latha Kant, Anthony J McAuley, Alexander Poylisher, André DeHon,
et al. 2018. In-network computing to the rescue of faulty links. In Proceedings of
the NetCompute Workshop.

[21] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Pad-
hye, and Marina Lipshteyn. 2016. RDMA over commodity ethernet at scale. In
Proceedings of SIGCOMM.

[22] Torsten Hoefler, Duncan Roweth, Keith Underwood, Bob Alverson, Mark Gris-
wold, Vahid Tabatabaee, Mohan Kalkunte, Surendra Anubolu, Siyan Shen, Abdul
Kabbani, Moray McLaren, and Steve Scott. 2023. Datacenter Ethernet and RDMA:
Issues at Hyperscale. arXiv preprint arXiv:2302.03337 (2023).

[23] IEEE. 2009. 802.11n-2009 Standard. https://standards.ieee.org/ieee/802.11n/3952/.
[24] IEEE. 2013. 802.11ac-2013 Standard. https://ieeexplore.ieee.org/document/

6687187.
[25] IEEE. 2015. IEEE Standard for Ethernet - Amendment 3: Physical Layer Specifi-

cations and Management Parameters for 40 Gb/s and 100 Gb/s Operation over
Fiber Optic Cables. IEEE Std 802.3bm-2015 (Amendment to IEEE Std 802.3-2012 as
amended by IEEE Std 802.3bk-2013 and IEEE Std 802.3bj-2014) (2015).

[26] IEEE. 2016. IEEE Standard for Ethernet – Amendment 2: Media Access Control
Parameters, Physical Layers, and Management Parameters for 25 Gb/s Operation
Amendment 2: Media Access Control Parameters, Physical Layers, and Manage-
ment Parameters for 25 Gb/s Operation. IEEE Std 802.3by-2016 (Amendment to
IEEE Std 802.3-2015 as amended by IEEE Std 802.3bw-2015) (2016).

[27] IEEE. 2017. IEEE Standard for Ethernet - Amendment 10: Media Access Control
Parameters, Physical Layers, and Management Parameters for 200 Gb/s and 400
Gb/s Operation. IEEE Std 802.3bs-2017 (Amendment to IEEE 802.3-2015 as amended
by IEEE’s 802.3bw-2015, 802.3by-2016, 802.3bq-2016, 802.3bp-2016, 802.3br-2016,

802.3bn-2016, 802.3bz-2016, 802.3bu-2016, 802.3bv-2017, and IEEE 802.3-2015/Cor1-
2017) (2017).

[28] IEEE. 2019. IEEE Standard for Ethernet - Amendment 3: Media Access Control
Parameters for 50 Gb/s and Physical Layers and Management Parameters for 50
Gb/s, 100 Gb/s, and 200 Gb/s Operation. IEEE Std 802.3cd-2018 (Amendment to
IEEE Std 802.3-2018 as amended by IEEE Std 802.3cb-2018 and IEEE Std 802.3bt-2018)
(2019).

[29] IEEE. 2020. IEEE Standard for Ethernet – Amendment 7: Physical Layer and
Management Parameters for 400 Gb/s over Multimode Fiber. IEEE Std 802.3cm-
2020 (Amendment to IEEE Std 802.3-2018 as amended by IEEE Std 802.3cb-2018, IEEE
Std 802.3bt-2018, IEEE Std 802.3cd-2018, IEEE Std 802.3cn-2019, IEEE Std 802.3cg-
2019, and IEEE Std 802.3cq-2020) (2020).

[30] Raj Joshi, Qi Guo, Nishant Budhdev, Ayush Mishra, Mun Choon Chan, and Ben
Leong. 2022. LinkGuardian: Mitigating the impact of packet corruption loss with
link-local retransmission. In Proceedings of APNet.

[31] Raj Joshi, Ben Leong, and Mun Choon Chan. 2019. Timertasks: Towards time-
driven execution in programmable dataplanes. In Proceedings of SIGCOMM
(Posters and Demos).

[32] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan M. G. Wassel, Xian
Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld,
Michael Ryan, David Wetherall, and Amin Vahdat. 2020. Swift: Delay Is Sim-
ple and Effective for Congestion Control in the Datacenter. In Proceedings of
SIGCOMM.

[33] Jeongkeun Lee. 2020. Advanced Congestion & Flow Control with Programmable
Switches. In P4 Expert Roundtable Series. https://opennetworking.org/wp-
content/uploads/2020/04/JK-Lee-Slide-Deck.pdf

[34] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, et al. 2019. HPCC:
High precision congestion control. In Proceedings of SIGCOMM.

[35] Hwijoon Lim, Wei Bai, Yibo Zhu, Youngmok Jung, and Dongsu Han. 2021. To-
wards timeout-less transport in commodity datacenter networks. In Proceedings
EuroSys.

[36] Justin Meza, Tianyin Xu, Kaushik Veeraraghavan, and Onur Mutlu. 2018. A Large
Scale Study of Data Center Network Reliability. In Proceedings of IMC.

[37] Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shujun Zhuang, Bo Li, Shuguang
Cheng, Jiaqi Gao, Yan Zhuang, Pengcheng Zhang, et al. 2022. From luna to
solar: the evolutions of the compute-to-storage networks in Alibaba cloud. In
Proceedings of SIGCOMM.

[38] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,
Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David Zats.
2015. TIMELY: RTT-based Congestion Control for the Datacenter. In Proceedings
of SIGCOMM.

[39] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi, Arvind Krishna-
murthy, Sylvia Ratnasamy, and Scott Shenker. 2018. Revisiting Network Support
for RDMA. In Proceedings of SIGCOMM.

[40] EdgeCore Networks. 2022. DCS802. https://www.edge-core.com/productsInfo.
php?cls=1&cls2=5&cls3=181&id=334.

[41] NVIDIA. 2020. Unbreakable Links - MLNX-OS v3.9.0300 - NVIDIA Network-
ing Docs. https://docs.nvidia.com/networking/display/MLNXOSv390300/
Unbreakable+Links.

[42] NVIDIA. 2022. RDMA Transport Modes. https://docs.nvidia.com/networking/
display/RDMAAwareProgrammingv17/Transport+Modes.

[43] NVIDIA. 2022. RoCE Selective Repeat. https://docs.nvidia.com/networking/m/
view-rendered-page.action?abstractPageId=25137694.

[44] Christina Parsa and JJ Garcia-Luna-Aceves. 1999. TULIP: A Link-Level Protocol
for Improving TCP over Wireless Links. In Proceedings of WCNC.

[45] Ting Qu, Raj Joshi, Mun Choon Chan, Ben Leong, Deke Guo, and Zhong Liu.
2019. SQR: In-network packet loss recovery from link failures for highly reliable
datacenter networks. In Proceedings of ICNP.

[46] Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen Yin, Qiaobin Fu, Gautam
Kumar, Masoud Moshref, Junhua Yan, Van Jacobson, David Wetherall, and Abdul
Kabbani. 2022. PLB: Congestion Signals Are Simple and Effective for Network
Load Balancing. In Proceedings of SIGCOMM.

[47] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren. 2015.
Inside the social network’s datacenter network. In Proceedings of SIGCOMM.

[48] Matt Sargent, Jerry Chu, Vern Paxson, and Mark Allman. 2011. Computing TCP’s
Retransmission Timer. RFC 6298 (2011).

[49] Omer S. Sella, Andrew W. Moore, and Noa Zilberman. 2018. FEC Killed The
Cut-Through Switch. In Proceedings of NEAT.

[50] Rajath Shashidhara, Tim Stamler, Antoine Kaufmann, and Simon Peter. 2022.
FlexTOE: Flexible TCP Offload with Fine-Grained Parallelism. In Proceedings of
NSDI.

[51] Rachee Singh, Manya Ghobadi, Klaus-Tycho Foerster, Mark Filer, and Phillipa
Gill. 2018. RADWAN: Rate Adaptive Wide Area Network. In Proceedings of
SIGCOMM.

[52] R Sivaram. 2008. Some Measured Google Flow Sizes. Google internal memo,
available on request (2008).

https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://www.kernel.org/doc/html/latest/networking/dctcp.html
https://www.kernel.org/doc/html/latest/networking/dctcp.html
https://www.fs.com/sg/products/84279.html?attribute=739&id=393015
https://www.fs.com/sg/products/11589.html
https://www.fs.com/sg/products/11589.html
https://www.fs.com/sg/products/146526.html
https://www.fs.com/sg/products/146526.html
https://standards.ieee.org/ieee/802.11n/3952/
https://ieeexplore.ieee.org/document/6687187
https://ieeexplore.ieee.org/document/6687187
https://opennetworking.org/wp-content/uploads/2020/04/JK-Lee-Slide-Deck.pdf
https://opennetworking.org/wp-content/uploads/2020/04/JK-Lee-Slide-Deck.pdf
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=334
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=334
https://docs.nvidia.com/networking/display/MLNXOSv390300/Unbreakable+Links
https://docs.nvidia.com/networking/display/MLNXOSv390300/Unbreakable+Links
https://docs.nvidia.com/networking/display/RDMAAwareProgrammingv17/Transport+Modes
https://docs.nvidia.com/networking/display/RDMAAwareProgrammingv17/Transport+Modes
https://docs.nvidia.com/networking/m/view-rendered-page.action?abstractPageId=25137694
https://docs.nvidia.com/networking/m/view-rendered-page.action?abstractPageId=25137694

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Joshi et al.

[53] Ashish Vulimiri, Oliver Michel, P Brighten Godfrey, and Scott Shenker. 2012.
More is less: Reducing latency via redundancy. In Proceedings of HotNets.

[54] Shuai Wang, Kaihui Gao, Kun Qian, Dan Li, Rui Miao, Bo Li, Yu Zhou, Ennan
Zhai, Chen Sun, Jiaqi Gao, Dai Zhang, Binzhang Fu, Frank Kelly, Dennis Cai,
Hongqiang Harry Liu, and Ming Zhang. 2022. Predictable vFabric on Informative
Data Plane. In Proceedings of SIGCOMM.

[55] Jim Warner. 2022. Packet Buffers. https://people.ucsc.edu/~warner/buffer.html.
[56] Xin Wu, Daniel Turner, Chao-Chih Chen, David A Maltz, Xiaowei Yang, Lihua

Yuan, and Ming Zhang. 2012. NetPilot: Automating datacenter network failure
mitigation. In Proceedings of SIGCOMM.

[57] Gaoxiong Zeng, Li Chen, Bairen Yi, and Kai Chen. 2022. Cutting Tail Latency in
Commodity Datacenters with Cloudburst. In Proceedings of INFOCOM.

[58] Qiao Zhang, Vincent Liu, and Hongyi Zeng. 2017. High-Resolution Measurement
of Data Center Microbursts. In Proceedings of IMC.

[59] Yu Zhou, Chen Sun, Hongqiang Harry Liu, Rui Miao, Shi Bai, Bo Li, Zhilong
Zheng, Lingjun Zhu, Zhen Shen, Yongqing Xi, et al. 2020. Flow event telemetry
on programmable data plane. In Proceedings of SIGCOMM.

[60] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion control for large-scale RDMA deployments. In
Proceedings of SIGCOMM.

[61] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-Tycho Förster, Arvind
Krishnamurthy, and Thomas Anderson. 2017. Understanding and mitigating
packet corruption in data center networks. In Proceedings of SIGCOMM.

[62] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Xuan Kelvin
Zou, Hang Guan, Arvind Krishnamurthy, and Thomas Anderson. 2017. RAIL: A
Case for Redundant Arrays of Inexpensive Links in Data Center Networks. In
Proceedings of NSDI.

seqNo

latestRxSeqNo

latestRxSeqNo
pendingAck

reTxReqs

piggybacked normal pkts

ACK/piggybacked normal pkts

Loss Noti cation pkts Loss Detection

Sender Switch Receiver Switch

(protected)

fi

Figure 17: State maintained by LinkGuardian switches and
different types of packets that read/update it.

Note: Appendices are supportingmaterial that has
NOT been peer-reviewed.

A PROTOCOL DETAILS
In this Appendix, we provide some details that might be helpful
for understanding our complete implementation of LinkGuardian,
but which are not essential for understanding the key ideas and
contributions of our work.

A.1 Loss Detection & Notification
In Figure 17, we list the state variables maintained by the sender
and receiver switches and the different packets that are exchanged.
The sender maintains a monotonically increasing seqNo while the
receiver records the latest received seqNo as latestRxSeqNo. A
copy of the latestRxSeqNo is also maintained at the sender, which
the receiver keeps updating. The sender also maintains a lookup
table called reTxReqs, which records the sequence numbers of the
packets for which retransmission is requested.

For each packet that is transmitted on the corrupting link (pro-
tected packet), the sender adds the seqNo to the packet (using a
custom header) and increments it by 1. The sender uses egress
mirroring to also make a copy of the packet along with the added
sequence number and buffers it until the receiver notifies that the
packet was received successfully. On the receiver, when a protected
packet is received, it updates the latestRxSeqNo to the seqNo in
the packet and also sets the pendingAck to 1. pendingAck set to
1 denotes that the copy of latestRxSeqNo on the sender is yet to
be updated.

No Loss Scenario. When there are no corruption packet losses,
the latestRxSeqNo on the receiver would increase by 1, each time a
protected packet is received. On every update of the latestRxSeqNo,
the receiver must update the latestRxSeqNo on the sender as soon
as possible so that the sender can drop the buffered packets that are
successfully delivered. This timely update of the latestRxSeqNo
on the sender is critical to ensure that LinkGuardian’s use of the
packet buffer at the sender is kept to a minimum.

Loss Scenario. When a protected packet(s) gets corrupted and
dropped by the receiving MAC, the receiver observes that the
latestRxSeqNo is incremented by more than 1. On noticing this,
the receiver activates a LossDetection() routine. In this routine,
the receiver generates a new packet called “Loss Notification” which
contains information about the missing sequence number as well
as the latestRxSeqNo. This loss notification packet is sent to the
sender through a high-priority queue (see Figure 5) to ensure timely
recovery. On reaching the sender, the lookup table reTxReqs (Fig-
ure 17) is updated with the sequence numbers of the packets that
need to be retransmitted.

https://people.ucsc.edu/~warner/buffer.html

LinkGuardian ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

recirc
buffer

seqno
<=

latest
RxSeqNo

Yes Yes

No

No

seqno
in

ReTxReq
ReTx!

Drop!

Figure 18: Sender-side buffering and Retransmission.

 0
 0.2
 0.4
 0.6
 0.8

 1

 2 2.5 3 3.5 4 4.5 5 5.5 6

25GC
D

F

ReTx Delay (µs)

 0
 0.2
 0.4
 0.6
 0.8

 1

 2 2.5 3 3.5 4 4.5 5 5.5 6

100GC
D

F

ReTx Delay (µs)

loss rate <= 10-4 10-4 < loss rate <= 10-3

Figure 19: Delay observed by LinkGuardian receiver switch to
receive retransmission from the time the loss was detected.
A.2 Sender-side Buffering & Retransmission
For each packet that is sent on the corrupting link, the sender switch
adds a monotonically increasing seqNo and uses egress mirroring
to create a copy of the packet for buffering. The packet buffering
on the sender switch is realized through recirculation. Specifically,
the buffered copy of the protected packet is sent to the recircula-
tion port of the switch dataplane pipeline. At the same time, as
described in §A.1, the receiver switch keeps the latestRxSeqNo
on the sender switch updated and additionally updates the lookup
table reTxReqs in case of a corruption packet loss. Each time the
buffered packet completes a recirculation loop, the sender switch
applies the logic shown in Figure 18 to the packet’s sequence num-
ber. Essentially, if the buffered packet’s sequence number is less
than or equal to the latestRxSeqNo, the sender switch checks the
reTxReqs lookup table to see if a retransmission is requested for
that sequence number. If so, the packet is retransmitted through a
high-priority queue (see Figure 5) or the packet is dropped other-
wise. If a packet is retransmitted, its sequence number is cleared
in the reTxReqs table. If the buffered packet’s sequence number is
greater than the latestRxSeqNo, then we do not know yet if the
packet was successfully received or not, and therefore the sender
switch continues to buffer the packet through recirculation.

B ADDITIONAL EXPERIMENTS AND RESULTS
This Appendix presents additional experiments as well as more
detailed results for the experiments described in the main body of
the paper.

B.1 Parameter Tuning
In this section, we describe how we derive the appropriate val-
ues for three parameters used by LinkGuardian: ackNoTimeout,
resumeThreshold, and pauseThreshold.

Recall that when LinkGuardian preserves packet ordering (de-
fault mode), the ackNoTimeout prevents LinkGuardian from stalling
in the event that a lost packet is never recovered (§3.3). Therefore,
ackNoTimeout needs to be set to a value larger than the expected
maximum retransmission delay. To estimate the retransmission
delay, we measured the time from when the receiver switch detects

 99.9995

 99.9996

 99.9997

 99.9998

 99.9999

 100

 1 2 3 4 5 6 7

C
D

F
(%

)

Consecutive Packets Lost (1518B)

10G-SR (1% Loss)
100G-SR4 (1% Loss)

25G-SR (1% Loss)
10G-SR (5% Loss)

100G-SR4 (5% Loss)
25G-SR (5% Loss)

Figure 20: Distribution of consecutive packets lost.

packet loss to when it successfully receives the retransmission from
the sender switch. Since high-priority queues are used for loss noti-
fication and retransmission, this retransmission delay is a function
of the switch pipeline latencies, the link speed, and the number of
retransmitted copies. If more than one copy is retransmitted (for
higher loss rates), then the worst-case retransmission delay is when
only the last copy is received. In Figure 19, we plot the distribu-
tion of the retransmission delays for ∼1million loss recoveries for
1,518 B packets. We conservatively set the ackNoTimeout to 7.5 `s
and 7 `s for 25G and 100G, respectively. A larger ackNoTimeout
leads to a slightly longer stall in transmission, but only in the un-
likely event that the original packet and all retransmitted copies
are lost.

The backpressure mechanism on the LinkGuardian receiver uses
the pauseThreshold and the resumeThreshold (see §3.3 and Fig-
ure 6). Recall that a resume message is sent when the reordering
buffer at the receiver drops below the resumeThreshold. If the
resumeThreshold is set too small, the reordering buffer will be
empty before the sender switch successfully resumes transmis-
sion. Hence, we set the resumeThreshold to a value that is larger
than the amount of data that would drain from the buffer dur-
ing the time from when the receiver sends a resume message to
when the receiver starts receiving traffic again. We refer to this
time as tflight_resume. tflight_resume is independent of the cor-
ruption loss rate and depends only on the link speed and switch
pipeline latencies. We measured the maximum tflight_resume val-
ues to be 1.9 `s and 1.6 `s for 25G and 100G links respectively.
Since the recirculation-based reordering buffer drains at 100G,
we set resumeThreshold at 40 KB and 37KB for 25G and 100G
links respectively. Since we use a fixed hysteresis of 2MTU, the
pauseThreshold is resumeThreshold + 2MTU.

B.2 Consecutive Corruption Packet Loss
In Figure 20, we plot the distribution of the number of consecutive
packets lost that we measured by setting the VOA to induce un-
reasonably high loss rates of 1% and 5%. Based on Figure 20, our
current implementation (§3.5) provisions for handling 5 consecutive
packets lost using 5 1-bit registers.

B.3 Impact on CUBIC and BBR transports
In this section, we present the results of the same experiment as in
§4.2 but with CUBIC and BRR transports. In Figures 21a and 21b,
we plot the results for CUBIC, and BBR respectively. The effective
link speed in these figures is measured separately by sending a line
rate UDP flow under the same experiment conditions.

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Joshi et al.

 24

 24.5

 25

 4
 5
 6
 7

R
at

e
(G

bp
s)

sendrate

 0
 200
 400
 600
 800

B
uf

fe
r

(K
B
) qdepth

LinkGuardian Rx buffer

 0
 30
 60

 0 2 4 6 8 10 12 14

#
.P

kt
s

Time (seconds)

End-to-End ReTx

Corruption (10-3)
starts!

effective link speed (24.6Gbps)

LinkGuardian
starts!

(a) CUBIC on a 25G link with 10-3 loss.

0

5

10

Ra
te

 (
G

bp
s)

sendrate

0

50

100

150

B
u�

er
 (

KB
)

0
40
80

120

0 2 4 6 8 10 12 14

#
.P

kt
s

Time (seconds)

End-to-End ReTx

effective link rate (9.83Gbps)
Corruption (10-3)

starts! starts!
LinkGuardian

qdepth
LinkGuardian Rx buffer

(b) BBR on a 10G link with 10-3 loss.
Figure 21: Performance of LinkGuardian for CUBIC and BBR
Transport Protocols.

CUBIC. In Figure 21a, we see that at 10-3 corruption loss, the
throughput for CUBIC reduces sharply once corruption losses are
introduced. Upon enabling LinkGuardian, the corruption losses are
nearly eliminated and the throughput returns to a level comparable
to that before packet corruption was introduced. We also notice that
there is a build-up in the flow’s buffer at the sender switch (shown
as “qdepth”) due to the reduced effective link capacity. CUBIC
being loss-based, we can also see congestion loss happening once
LinkGuardian is enabled. Note that LinkGuardian only protects
and retransmits the packets that are sent out on the corrupting link
and is not affected by any congestion loss happening due to the
overflowing of the normal packet queue.

BBR. Since BBR is mostly agnostic to packet loss, we see in
Figure 21b that it suffers minimal degradation when corruption loss
is introduced5. Nevertheless, it seems that once LinkGuardian is
enabled, we still see a small increase in the observed throughput.

These results show that, other than ECN-basedDCTCP, even loss-
based and delay-based congestion control protocols work correctly
with LinkGuardian.

B.4 Overheads
In this section, we present more details for the overhead results
presented in §4.6. Recall that these overhead results correspond
to the “stress test” experiments in §4.1, where we run continuous
line-rate traffic. Therefore, these results represent the “worst case”

5We ran BBR on a 10G link instead of a 25G link because in our setup, BBR became
CPU-limited when we tried to run the experiment on a 25G link, and it was not able
to fully saturate the link.

Table 4: Recirculation overhead (% pipe forwarding capacity)

Loss Rate → 10−5 10−4 10−3

25G TX 0.45 0.449 0.444
25G RX 0.661 0.662 0.664
100G TX 0.663 0.657 0.608
100G RX 0.657 0.658 0.662

cost of running LinkGuardian as real-world link utilization exceeds
90% only about 10% of the time [58].

Recirculation Overhead. In Table 4, we show the recirculation
overhead for LinkGuardian at both the sender and the receiver
switches in terms of the percentage of the switch pipeline’s process-
ing capacity. We see that LinkGuardianNB has the same recircula-
tion overhead on the sender switch but zero on the receiver switch.
Overall, we see that the recirculation takes up less than 1% of the
switch pipeline’s processing capacity and therefore this overhead
is negligible. Since this overhead is for 1500B MTU-sized packets
sent at line rate (§4.1), we can extrapolate it to obtain the overhead
when using smaller packet sizes. Considering the median packet
size of 250B observed in datacenter networks [47], we expect the
recirculation overhead to be ∼6 times compared to the one reported
in Table 4. Even then, the maximum expected worst-case overhead
would be 0.664 x 6 = 3.984%, which is relatively low.

C MONITORING LINKS FOR CORRUPTION
To detect corrupting links, we implemented corruptd, a daemon
that runs at the local control plane of the programmable switches.

Detecting Corrupting Links. corruptd periodically polls the
driver (in this paper, we configure the interval as 1 second) to
extract the switch port RX statistics, specifically, framesRxOk and
framesRxAll. We maintain a moving window of 100M frames
to compute the link loss rates, given by 𝐿 =

𝑓 𝑟𝑎𝑚𝑒𝑠𝑅𝑥𝑂𝑘

𝑓 𝑟𝑎𝑚𝑒𝑠𝑅𝑥𝐴𝑙𝑙
. When

𝐿 ≥ 10−8 for any particular link, the upstream transmitting switch
will be notified to activate LinkGuardian.

Notification and Activation. For scalability, corruptd dae-
mons communicate through a publish-subscribe (PubSub) pattern
using Redis. Each daemon subscribes to link corruption notifications
relating to the local switch’s links. Upon receipt of a notification,
corruptd pushes corresponding dataplane match-action table en-
tries to activate LinkGuardian for the corrupting link depending
on the target and the actual loss rates (see Equation 2).

D LINK CORRUPTION TRACE GENERATION
A link corruption trace is essentially a time series of link corruption
events where a link corruption event denotes which link started
to corrupt packets and at what loss rate. To determine the time at
which a link would start corrupting packets, we assume a per-link 1-
parameter Weibull distribution with a constant shape parameter (𝛽).
This is because the location parameter of theWeibull distribution (𝛾)
is zero since it is not guaranteed that all links in a large warehouse-
scale datacenter would not start corrupting packets during a certain
initial period. Also, the shape parameter (𝛽) is equal to 1, since the
corruption is purely caused by random external events such as
connector contamination, fiber bending, etc. Therefore, the per-link
Weibull PDF that determines the time until a link’s next failure is

LinkGuardian ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

given by

𝑓 (𝑡) = 1
[
× 𝑒

−
(
𝑡
[

)
(3)

where the parameter [is the mean-time-to-failure (MTTF) of a
link. A study by Meza et al. [36] showed that for fiber links from
different vendors considered in their study, the mean time between
the link faults was at most 10,000 hours. We conservatively use the
value of 10,000 hours as the MTTF ([in Equation 3) since Meza et al.
did not specifically consider only intra-datacenter links. What this
means is that, on average, it would take 10,000 hours (or 1.15 years)
for a fiber link to start corrupting packets from the time it was last
repaired.

To generate the trace, we first draw samples from the Weibull
distribution independently for each link to determine the times
at which each link would start corrupting packets. This gives us
the various times of the corruption events and the link involved
in each corruption event. Then for each corruption event, we use
the corruption loss rate distribution from CorrOpt (c.f. Table 1 in
[61]) to determine the loss rate. This list of corruption events sorted
by time forms the link corruption trace. We note that the trace
generated using the abovemethodology has a nearly random spatial
distribution of simultaneously corrupting links which matches the
observation by Zhuo et al. [61] in production datacenters.

	Abstract
	1 Introduction
	2 Background & Related work
	3 LinkGuardian
	3.1 Fast ACKs to prevent buffer overflow
	3.2 Detecting Tail Losses for Single-Packet Flows
	3.3 Reordering Buffer without Overflow
	3.4 Mitigating Potential ReTx Losses
	3.5 Implementation Details
	3.6 Repairing Corrupting Links in Practice

	4 Evaluation
	4.1 Effective Loss Rate & Link Speed
	4.2 Impact on Transport Protocols
	4.3 Tail Packet Loss and Short Flows
	4.4 Why does out-of-order recovery work for TCP?
	4.5 Contribution of different mechanisms
	4.6 Overhead
	4.7 Comparison with Wharf
	4.8 Effectiveness in large-scale deployment

	5 Discussion & Future work
	6 Conclusion
	Acknowledgments
	References
	A Protocol Details
	A.1 Loss Detection & Notification
	A.2 Sender-side Buffering & Retransmission

	B Additional Experiments and Results
	B.1 Parameter Tuning
	B.2 Consecutive Corruption Packet Loss
	B.3 Impact on CUBIC and BBR transports
	B.4 Overheads

	C Monitoring Links for Corruption
	D Link Corruption Trace Generation

