
Fast and efficient link failure detection in the dataplane

Not possible to achieve with a packet-driven execution model
→ An action is required in response to the absence of a packet

Avoid aging metrics, refresh them!
‒ In CONGA [SIGCOMM ‘14] and DistCache [FAST ‘19], source ToR

blindly ages the metrics when there is no reverse traffic
‒ Instead, destination ToR can explicitly refresh the metrics in the

absence of reverse traffic

Mechanisms for reliable message delivery in the dataplane
‒ Msg retransmission in dataplane in the absence of an ACK (timeout)

Simple Periodic Tasks
‒ Periodically measure link utilization every 25µs (Zhang et al. [IMC ‘17])

(3) On each timeout, explicit ping packets are sent to check connectivity

Raj Joshi, Ben Leong, Mun Choon Chan

ACM SIGCOMM
August 19-24, 2019

Beijing, ChinaTimerTasks
Towards Time-driven Execution
in Programmable Dataplanes

Problem Orchestrating TimerTasks

Need for Time-driven Execution

The TimerTask Abstraction

Evaluation Case Studies

Future Work

Programmable dataplanes provide event-driven execution
‒ By means of the match-action paradigm
‒ Event = arrival of a packet OR a specific packet (match specification)

Any programmed logic executes when there is a packet
‒ But if there is no packet, nothing happens!
‒ Not a problem for implementing flexible forwarding pipelines

Increasingly used for advanced applications
‒ In-network protocols
‒ Distributed systems that are co-designed with the network

A purely event-driven execution model is insufficient!

(1) Packets
from normal
traffic act as
“heartbeats”

(2) Timer starts
when there is
no normal
traffic

What kind of execution semantics do we need?
‒ If (condition == true) for certain timeout → execute an action
‒ e.g. If no heartbeat packet within 100ms, inform the master
‒ Periodic tasks can be expressed with an always true condition

A TimerTask consists of:
‒ ResetMatch: same as a P4 “match” specification (just different name)
‒ Timeout: a positive constant
‒ Action: standard P4 action

How does it work?
‒ The system runtime implements an implicit timer
‒ If a packet matches the ResetMatch specification: the timer is reset
‒ If the timer times out: the action is executed & the timer is restarted

timertask link_failure_detection {
resetmatch = {

standard_metadata.ingress_port: exact;
}
timeout = 3; // in microseconds
action = send_ping_request;

}

Challenge
‒ Time-driven abstraction on top of packet-driven hardware

Solution approach: inspired from Linux OS
‒ Linux is event-driven
‒ Provides time-driven execution via periodic events (kernel ticks)

“Periodic-Event Framework” for the dataplane
‒ Dataplane ticks: periodic and regular packets
‒ On-chip hardware packet generator: source of dataplane ticks
‒ Orchestrate TimerTasks: decrement and reset timers, perform actions

ingress_port action
5 reset

task_id timeRemain
0 3

task_id timeout
0 3

updateTime()

if (meta.take_action == 1)

resetTime()
if (meta.reset == 1)

Normal
Pkt

Data
plane
Tick task_id action

0 send_ping_req(5)

action reset() {
meta.reset = 1;

}

if (timeRemain == 0){
timeRemain = timeout;
meta.take_action = 1;

}

Timer register

Lookup Table

ResetMatch Table(s)

Actions Table

decrement

reset

TimerTask link_failure_detection for switch2 (port 5)

port 4switch1 switch2

port 5

Evaluation Setup for Periodic-Event Framework
‒ Barefoot Tofino switch and two x86 servers in linear topology
‒ Dataplane ticks: Tofino’s on-chip packet generator

Dataplane tick inter-arrival time
‒ 99th percentile error in tick inter-arrival time (1µs to 100ms) < 0.1%

1) Fast and efficient link failure detection protocol
‒ Explicitly pings adjacent switch when no packet arrives for 3µs
‒ Detects link failures within 6µs

2) Metric refreshing mechanism
‒ Explicitly updates piggybacked metrics in lieu of normal traffic
‒ Future work: quantify application-level benefits

3) High-resolution network measurements
‒ Periodic task to read switch counters at 1µs interval

P4 Program
with TimerTasks

Standard
P4 Program

TimerTask Target-specific
P4 Target

Compiler Compiler

TimerTask Compiler
‒ Timer start and stop APIs in the dataplane
‒ Table placement: TimerTasks interact with rest of the P4 program
‒ Multiplexing: single dataplane tick packet to update multiple timers
‒ TimerTask runtime (control plane): add/remove TimerTask “instances”

Native TimerTasks in hardware

